Advertisement

Nuclear Science and Techniques

, 30:141 | Cite as

Stellar reaction rate of 55Ni(p, γ)56Cu in Type I X-ray bursts

  • Shao-Bo Ma
  • Li-Yong ZhangEmail author
  • Jun Hu
Article
  • 8 Downloads

Abstract

\(^{56}\hbox {Cu}\) is close to the waiting-point nucleus \(^{56}\hbox {Ni}\) and lies on the rapid proton capture (rp) process path in Type I X-ray bursts (XRBs). In this work, we obtained a revised thermonuclear reaction rate of \(^{55}\hbox {Ni}(\hbox {p},\gamma )^{56}\hbox {Cu}\) in the temperature region relevant to XRBs. This rate was recalculated based on the recent experimental level structure in \(^{56}\hbox {Cu}\), the recently measured proton separation energy of \(S_\text {p}\) = 579.8(7.1) keV, together with shell-model calculation, and the mirror nuclear structure in \(^{56}\hbox {Co}\). The associated uncertainties in the rates were estimated by a Monte Carlo method. Our revised rate is significantly different from the recent results, which were partially based on experimental results; in addition, we found that a result in a previous work was incorrect. We recommend our revised rate to be incorporated in the future astrophysical network calculations.

Keywords

Nuclear astrophysics Reaction rate X-ray burst 

References

  1. 1.
    S.E. Woosley, R.E. Taam, Gamma-ray bursts from thermonuclear explosions on neutron stars. Nature 263, 101 (1976).  https://doi.org/10.1038/263101a0 CrossRefGoogle Scholar
  2. 2.
    P.C. Joss, X-ray bursts and neutron-star thermonuclear flashes. Nature 270, 310 (1977).  https://doi.org/10.1038/270310a0 CrossRefGoogle Scholar
  3. 3.
    H. Schatz, A. Aprahamian, V. Barnard et al., End point of the rp process on accreting neutron stars. Phys. Rev. Lett. 86, 3471 (2001).  https://doi.org/10.1103/PhysRevLett.86.3471 CrossRefGoogle Scholar
  4. 4.
    V.-V. Elomaa, G.K. Vorobjev, A. Kankainen et al., Quenching of the SnSbTe cycle in the rp process. Phys. Rev. Lett. 102, 252501 (2009).  https://doi.org/10.1103/PhysRevLett.102.252501 CrossRefGoogle Scholar
  5. 5.
    R.K. Wallace, S.E. Woosley, Explosive hydrogen burning. Astrophys. J. Suppl. 45, 389 (1981).  https://doi.org/10.1086/190717 CrossRefGoogle Scholar
  6. 6.
    H. Schatz, A. Aprahamian, J. Gorres et al., rp-process nucleosynthesis at extreme temperature and density conditions. Phys. Rep. 294, 167 (1998).  https://doi.org/10.1016/S0370-1573(97)00048-3 CrossRefGoogle Scholar
  7. 7.
    S.E. Woosley, A. Heger, A. Cumming et al., Models for type I X-ray bursts with improved nuclear physics. Astrophys. J. Suppl. 151, 75 (2004).  https://doi.org/10.1086/381533 CrossRefGoogle Scholar
  8. 8.
    W. Lewin, J. Paradijs, R.E. Taam, X-ray bursts. Space Sci. Rev. 62, 223 (1993).  https://doi.org/10.1007/BF00196124 CrossRefGoogle Scholar
  9. 9.
    T. Strohmayer, L. Bildsten, W. Lewin et al., Compact Stellar X-Ray Sources (Cambridge University Press, Cambridge, 2006)Google Scholar
  10. 10.
    A. Parikh, J. Jose, G. Sala et al., Nucleosynthesis in type I X-ray bursts. Prog. Part. Nucl. Phys. 69, 225 (2013).  https://doi.org/10.1016/j.ppnp.2012.11.002 CrossRefGoogle Scholar
  11. 11.
    A. Parikh, J. Jose, C. Iliadis et al., Impact of uncertainties in reaction Q values on nucleosynthesis in type I X-ray bursts. Phys. Rev. C 79, 045802 (2009).  https://doi.org/10.1103/PhysRevC.79.045802 CrossRefGoogle Scholar
  12. 12.
    H. Schatz, K.E. Rehm, X-ray binaries. Nucl. Phys. A777, 601 (2006).  https://doi.org/10.1016/j.nuclphysa.2005.05.200 CrossRefGoogle Scholar
  13. 13.
    F. Pougheon, J.C. Jacmart, E. Quiniou et al., Direct observation of new proton rich nuclei in the region \(23\le \text{ Z }\le 9\) using a 55 AMeV 58Ni beam. Z. Phys. A 327, 17 (1987).  https://doi.org/10.1007/BF01295244 CrossRefGoogle Scholar
  14. 14.
    B.A. Brown, R.R.C. Clement, H. Schatz et al., Proton drip-line calculations and the rp process. Phys. Rev. C 65, 045802 (2002).  https://doi.org/10.1103/PhysRevC.65.045802 CrossRefGoogle Scholar
  15. 15.
    J. Tian, N. Wang, C. Li et al., Improved Kelson–Garvey mass relations for proton-rich nuclei. Phys. Rev. C 87, 014313 (2013).  https://doi.org/10.1103/PhysRevC.87.014313 CrossRefGoogle Scholar
  16. 16.
    X.L. Tu, Y.A. Litvinov, K. Blaum et al., Indirect mass determination for the neutron-deficient nuclides \(^{44}\text{ V }\), \(^{48}\text{ Mn }\), \(^{52}\text{ Co }\) and \(^{56}\text{ Cu }\). Nucl. Phys. A 945, 89 (2016).  https://doi.org/10.1016/j.nuclphysa.2015.09.016 CrossRefGoogle Scholar
  17. 17.
    A.H. Wapstra, G. Audi, The 1983 atomic mass evaluation: (I). Atomic mass table. Nucl. Phys. A432, 1 (1985).  https://doi.org/10.1016/0375-9474(85)90283-0 CrossRefGoogle Scholar
  18. 18.
    G. Audi, A.H. Wapstra, The 1995 update to the atomic mass evaluation. Nucl. Phys. A 595, 409 (1995).  https://doi.org/10.1016/0375-9474(95)00445-9 CrossRefGoogle Scholar
  19. 19.
    G. Audi, A.H. Wapstra, C. Thibault, The AME2003 atomic mass evaluation (II). Tables, graphs and references. Nucl. Phys. A 729, 337 (2003).  https://doi.org/10.1016/j.nuclphysa.2003.11.003 CrossRefGoogle Scholar
  20. 20.
    M. Wang, G. Audi, A.H. Wapstra et al., The AME2012 atomic mass evaluation. Chin. Phys. C 36, 1603 (2012).  https://doi.org/10.1088/1674-1137/36/12/003 CrossRefGoogle Scholar
  21. 21.
    M. Wang, G. Audi, F.G. Kondev et al., The AME2016 atomic mass evaluation (II). Tables, graphs and references. Chin. Phys. C 41, 030003 (2017).  https://doi.org/10.1088/1674-1137/41/3/030003 CrossRefGoogle Scholar
  22. 22.
    Y.H. Zhang, P. Zhang, X.H. Zhou et al., Isochronous mass measurements of \(\text{ T }_{z} = -1\) fp-shell nuclei from projectile fragmentation of \(^{58}\text{ Ni }\). Phys. Rev. C 98, 014319 (2018).  https://doi.org/10.1103/PhysRevC.98.014319 CrossRefGoogle Scholar
  23. 23.
    A.A. Valverde, M. Brodeur, G. Bollen et al., High-precision mass measurement of \(^{56}\text{ Cu }\) and the redirection of the rp-process flow. Phys. Rev. Lett. 120, 032701 (2018).  https://doi.org/10.1103/PhysRevLett.120.032701 CrossRefGoogle Scholar
  24. 24.
    L. Van Wormer, J. Gorres, C. Iliadis et al., Reaction rates and reaction sequences in the rp-process. Astrophys. J. 432, 326 (1994).  https://doi.org/10.1086/174572 CrossRefGoogle Scholar
  25. 25.
    R.H. Cyburt, A.M. Amthor, R. Ferguson et al., The JINA REACLIB database: its recent updates and impact on type-I X-ray bursts. Astrophys. J. Suppl. 189, 240 (2010).  https://doi.org/10.1088/0067-0049/189/1/240 CrossRefGoogle Scholar
  26. 26.
    J.L. Fisker, V. Barnard, J. Gorres et al., Shell model based reaction rates for rp-process nuclei in the mass range A \(=\) 44–63. At. Data Nucl. Data Tables 79, 241 (2001).  https://doi.org/10.1006/adnd.2001.0867 CrossRefGoogle Scholar
  27. 27.
    T. Rauscher, F.K. Thielemann, Astrophysical reaction rates from statistical model calculations. At. Data Nucl. Data Tables 75, 1 (2000).  https://doi.org/10.1006/adnd.2000.0834 CrossRefGoogle Scholar
  28. 28.
    P. Möller, J.R. Nix, W.D. Myers et al., Nuclear ground-state masses and deformations At. Data Nucl. Data Tables 59, 185 (1995).  https://doi.org/10.1006/adnd.1995.1002 CrossRefGoogle Scholar
  29. 29.
    J.M. Pearson, R.C. Nayak, S. Goriely et al., Nuclear mass formula with Bogolyubov-enhanced shell-quenching: application to r-process. Phys. Lett. B 387, 455 (1996).  https://doi.org/10.1016/0370-2693(96)01071-4 CrossRefGoogle Scholar
  30. 30.
    W.J. Ong, C. Langer, F. Montes et al., Low-lying level structure of \(^{56}\text{ Cu }\) and its implications for the rp process. Phys. Rev. C 95, 055806 (2017).  https://doi.org/10.1103/PhysRevC.95.055806 CrossRefGoogle Scholar
  31. 31.
    S.E.A. Orrigo, B. Rubio, Y. Fujita et al., Observation of the \(\alpha \)-delayed \(\gamma \)-proton decay of \(^{56}\text{ Zn }\) and its impact on the Gamow–Teller strength evaluation. Phys. Rev. Lett. 112, 222501 (2014).  https://doi.org/10.1103/PhysRevLett.112.222501 CrossRefGoogle Scholar
  32. 32.
    Evaluated Nuclear Structure Data File (ENSDF) Retrieval. http://www.nndc.bnl.gov/ensdf/
  33. 33.
    J. Huo, S. Huo, D. Yang, Nuclear data sheets for A \(=\) 56. Nucl. Data Sheets 112, 1513 (2011).  https://doi.org/10.1016/j.nds.2011.04.004 CrossRefGoogle Scholar
  34. 34.
    J.J. He, A. Parikh, B.A. Brown et al., Thermonuclear \(^{42}\text{ Ti }(\text{ p },\gamma )^{43}\text{ V }\) rate in type-I X-ray bursts. Phys. Rev. C 89, 035802 (2014).  https://doi.org/10.1103/PhysRevC.89.035802 CrossRefGoogle Scholar
  35. 35.
    Y.H. Lam, J.J. He, A. Parikh et al., Reaction rates of \(^{64}\text{ Ge }(\text{ p },\gamma )^{65}\text{ As }\) and \(^{65}\text{ As }(\text{ p },\gamma )^{66}\text{ Se }\) and the extent of nucleosynthesis in type I X-ray bursts. Astrophys. J. 818, 78 (2016).  https://doi.org/10.3847/0004-637X/818/1/78 CrossRefGoogle Scholar
  36. 36.
    C. Iliadis, Proton single-particle reduced widths for unbound states. Nucl. Phys. A 618, 166 (1997).  https://doi.org/10.1016/S0375-9474(97)00065-1 CrossRefGoogle Scholar
  37. 37.
    C. Langer, F. Montes, A. Aprahamian et al., Determining the rp-process flow through \(^{56}\text{ Ni }\): resonances in \(^{57}\text{ Cu }(\text{ p },\gamma )^{58}\text{ Zn }\) identified with GRETINA. Phys. Rev. Lett. 113, 032502 (2014).  https://doi.org/10.1103/PhysRevLett.113.032502 CrossRefGoogle Scholar
  38. 38.
    A. Parikh, J. Jose, F. Moreno et al., The effects of variations in nuclear processes on type I X-ray burst nucleosynthesis. Astrophys. J. Suppl. 178, 110 (2008).  https://doi.org/10.1086/589879 CrossRefGoogle Scholar
  39. 39.
    J. José, F. Moreno, A. Parikh et al., Hydrodynamic models of type I X-ray bursts: metallicity effects. Astrophys. J. Suppl. 189, 204 (2010).  https://doi.org/10.1088/0067-0049/189/1/204 CrossRefGoogle Scholar
  40. 40.
    C.E. Rolfs, W.S. Rodney, Cauldrons in the Cosmos (University of Chicago Press, Chicago, 1988)Google Scholar

Copyright information

© China Science Publishing & Media Ltd. (Science Press), Shanghai Institute of Applied Physics, the Chinese Academy of Sciences, Chinese Nuclear Society and Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Institute of Modern PhysicsChinese Academy of SciencesLanzhouChina
  2. 2.University of Chinese Academy of SciencesBeijingChina
  3. 3.College of Nuclear Science and TechnologyBeijing Normal UniversityBeijingChina

Personalised recommendations