An APXPS endstation for gas–solid and liquid–solid interface studies at SSRF

  • Jun Cai
  • Qiao Dong
  • Yong Han
  • Bao-Hua Mao
  • Hui Zhang
  • Patrik G. Karlsson
  • John Åhlund
  • Ren-Zhong Tai
  • Yi YuEmail author
  • Zhi LiuEmail author


In the past few decades, various surface analysis techniques find wide applications in studies of interfacial phenomena ranging from fundamental surface science, catalysis, environmental science and energy materials. With the help of bright synchrotron sources, many of these techniques have been further advanced into novel in-situ/operando tools at synchrotron user facilities, providing molecular level understanding of chemical/electrochemical processes in-situ at gas–solid and liquid–solid interfaces. Designing a proper endstation for a dedicated beamline is one of the challenges in utilizing these techniques efficiently for a variety of user’s requests. Many factors, including pressure differential, geometry and energy of the photon source, sample and analyzer, need to be optimized for the system of interest. In this paper, we discuss the design and performance of a new endstation at beamline 02B at the Shanghai Synchrotron Radiation Facility for ambient pressure X-ray photoelectron spectroscopy studies. This system, equipped with the newly developed high-transmission HiPP-3 analyzer, is demonstrated to be capable of efficiently collecting photoelectrons up to 1500 eV from ultrahigh vacuum to ambient pressure of 20 mbar. The spectromicroscopy mode of HiPP-3 analyzer also enables detection of photoelectron spatial distribution with resolution of 2.8 ± 0.3 µm in one dimension. In addition, the designing strategies of systems that allow investigations in phenomena at gas–solid interface and liquid–solid interface will be highlighted through our discussion.


Ambient pressure XPS Synchrotron Liquid–solid interface Spectromicroscopy 


  1. 1.
    G.A. Somorjai, Y. Li, Introduction to Surface Chemistry and Catalysis (Wiley, Hoboken, 2010)Google Scholar
  2. 2.
    S. Hüfner, Photoelectron spectroscopy: principles and applications (Springer, Berlin, 2013)Google Scholar
  3. 3.
    M. Salmeron, R. Schlögl, Ambient pressure photoelectron spectroscopy: a new tool for surface science and nanotechnology. Surf. Sci. Rep. 63(4), 169–199 (2008). CrossRefGoogle Scholar
  4. 4.
    D. Starr, Z. Liu, M. Hävecker et al., Investigation of solid/vapor interfaces using ambient pressure X-ray photoelectron spectroscopy. Chem. Soc. Rev. 42(13), 5833–5857 (2013). CrossRefGoogle Scholar
  5. 5.
    H.-J. Freund, H. Kuhlenbeck, J. Libuda et al., Bridging the pressure and materials gaps between catalysis and surface science: clean and modified oxide surfaces. Top. Catal. 15(2–4), 201–209 (2001). CrossRefGoogle Scholar
  6. 6.
    P. Stoltze, J. Nørskov, Bridging the “Pressure Gap” between ultrahigh-vacuum surface physics and high-pressure catalysis. Phys. Rev. Lett. 55(22), 2502–2505 (1985). CrossRefGoogle Scholar
  7. 7.
    K. Siegbahn, C. Nordling, G. Johansson et al., ESCA Applied to Free Molecules (North-Holland Publishing Co., Amsterdam, 1969)Google Scholar
  8. 8.
    R.W. Joyner, M.W. Roberts, K. Yates, A “high-pressure” electron spectrometer for surface studies. Surf. Sci. 87(2), 501–509 (1979). CrossRefGoogle Scholar
  9. 9.
    H. Siegbahn, S. Svensson, M. Lundholm, A new method for ESCA studies of liquid-phase samples. J. Electron Spectrosc. Relat. Phenom. 24(2), 205–213 (1981). CrossRefGoogle Scholar
  10. 10.
    H. Ruppender, M. Grunze, C. Kong et al., In situ X-ray photoelectron spectroscopy of surfaces at pressures up to 1 mbar. Surf. Interface Anal. 15(4), 245–253 (1990). CrossRefGoogle Scholar
  11. 11.
    D.F. Ogletree, H. Bluhm, G. Lebedev et al., A differentially pumped electrostatic lens system for photoemission studies in the millibar range. Rev. Sci. Instrum. 73(11), 3872–3877 (2002). CrossRefGoogle Scholar
  12. 12.
    D.F. Ogletree, H. Bluhm, E.D. Hebenstreit et al., Photoelectron spectroscopy under ambient pressure and temperature conditions. Nucl. Instrum. Methods A 601(1), 151–160 (2009). CrossRefGoogle Scholar
  13. 13.
    H. Bluhm, M. Hävecker, A. Knop-Gericke et al., Methanol oxidation on a copper catalyst investigated using in situ X-ray photoelectron spectroscopy. J. Phys. Chem. B 108(38), 14340–14347 (2004). CrossRefGoogle Scholar
  14. 14.
    M.E. Grass, P.G. Karlsson, F. Aksoy et al., New ambient pressure photoemission endstation at Advanced Light Source beamline 9.3.2. Rev. Sci. Instrum. 81(5), 053106 (2010). CrossRefGoogle Scholar
  15. 15.
    J. Schnadt, J. Knudsen, J.N. Andersen et al., The new ambient-pressure X-ray photoelectron spectroscopy instrument at MAX-lab. J. Synchrotron. Radiat. 19(5), 701–704 (2012). CrossRefGoogle Scholar
  16. 16.
    R. Toyoshima, M. Yoshida, Y. Monya et al., In situ ambient pressure XPS study of CO oxidation reaction on Pd(111) surfaces. J. Phys. Chem. C 116(35), 18691–18697 (2012). CrossRefGoogle Scholar
  17. 17.
    S. Kaya, H. Ogasawara, L.-Å. Näslund et al., Ambient-pressure photoelectron spectroscopy for heterogeneous catalysis and electrochemistry. Catal. Today 205, 101–105 (2013). CrossRefGoogle Scholar
  18. 18.
    C. Zhang, M.E. Grass, A.H. McDaniel et al., Measuring fundamental properties in operating solid oxide electrochemical cells by using in situ X-ray photoelectron spectroscopy. Nat. Mater. 9(11), 944–949 (2010). CrossRefGoogle Scholar
  19. 19.
    F. Tao, M.E. Grass, Y. Zhang et al., Reaction-driven restructuring of Rh-Pd and Pt-Pd core-shell nanoparticles. Science 322(5903), 932–934 (2008). CrossRefGoogle Scholar
  20. 20.
    G.A. Somorjai, H. Frei, J.Y. Park, Advancing the frontiers in nanocatalysis, biointerfaces, and renewable energy conversion by innovations of surface techniques. J. Am. Chem. Soc. 131(46), 16589–16605 (2009). CrossRefGoogle Scholar
  21. 21.
    M. Favaro, B. Jeong, P.N. Ross et al., Unravelling the electrochemical double layer by direct probing of the solid/liquid interface. Nat. Commun. 7, 12695 (2016). CrossRefGoogle Scholar
  22. 22.
    N.J. Divins, A. Inma, E. Carlos et al., Influence of the support on surface rearrangements of bimetallic nanoparticles in real catalysts. Science 346(6209), 620–623 (2014). CrossRefGoogle Scholar
  23. 23.
    S. Axnanda, E.J. Crumlin, B. Mao et al., Using “Tender” X-ray ambient pressure X-ray photoelectron spectroscopy as a direct probe of solid-liquid interface. Sci. Rep. 5, 9788 (2015). CrossRefGoogle Scholar
  24. 24.
    S.K. Eriksson, M. Hahlin, J.M. Kahk et al., A versatile photoelectron spectrometer for pressures up to 30 mbar. Rev. Sci. Instrum. 85(7), 075119 (2014). CrossRefGoogle Scholar
  25. 25.
    D. Teschner, A. Pestryakov, E. Kleimenov et al., High-pressure X-ray photoelectron spectroscopy of palladium model hydrogenation catalysts: part 1: effect of gas ambient and temperature. J. Catal. 230(1), 186–194 (2005). CrossRefGoogle Scholar
  26. 26.
    S. Nemšák, E. Strelcov, H. Guo et al., In aqua electrochemistry probed by XPEEM: Experimental setup, examples, and challenges. Top. Catal. 61(20), 2195–2206 (2018). CrossRefGoogle Scholar
  27. 27.
    N. Mårtensson, P. Baltzer, P.A. Brühwiler et al., A very high resolution electron spectrometer. J. Electron Spectrosc. Relat. Phenom. 70(2), 117–128 (1994). CrossRefGoogle Scholar
  28. 28.
    F. Tao, S. Dag, L.-W. Wang et al., Break-up of stepped platinum catalyst surfaces by high CO coverage. Science 327(5967), 850–853 (2010). CrossRefGoogle Scholar
  29. 29.
    P. Gao, S. Li, X. Bu et al., Direct conversion of CO2 into liquid fuels with high selectivity over a bifunctional catalyst. Nat. Chem. 9(1), 1019–1024 (2017). CrossRefGoogle Scholar
  30. 30.
    C. Zhang, M.E. Grass, Y. Yu et al., Multielement activity mapping and potential mapping in solid oxide electrochemical cells through the use of operando XPS. ACS Catal. 2(11), 2297–2304 (2012). CrossRefGoogle Scholar
  31. 31.
    C. Zhang, Y. Yu, M.E. Grass et al., Mechanistic studies of water electrolysis and hydrogen electro-oxidation on high temperature ceria-based solid oxide electrochemical cells. J. Am. Chem. Soc. 135(31), 11572–11579 (2013). CrossRefGoogle Scholar
  32. 32.
    M.O.M. Edwards, P.G. Karlsson, S.K. Eriksson et al., Increased photoelectron transmission in High-pressure photoelectron spectrometers using “swift acceleration”. Nucl. Instrum. Methods A 785, 191–196 (2015). CrossRefGoogle Scholar
  33. 33.
    Y. Han, S. Axnanda, E.J. Crumlin et al., Observing the electrochemical oxidation of Co metal at the solid/liquid interface using ambient pressure X-ray photoelectron spectroscopy. J. Phys. Chem. B. (2017). CrossRefGoogle Scholar
  34. 34.
    M.F. Lichterman, S. Hu, M.H. Richter et al., Direct observation of the energetics at a semiconductor/liquid junction by operando X-ray photoelectron spectroscopy. Energy Environ. Sci. 8(8), 2409–2416 (2015). CrossRefGoogle Scholar
  35. 35.
    P. Baltzer, L. Karlsson, M. Lundqvist et al., Resolution and signal-to-background enhancement in gas-phase electron spectroscopy. Rev. Sci. Instrum. 64(8), 2179–2189 (1993). CrossRefGoogle Scholar
  36. 36.
    J.L. Campbell, T. Papp, Widths of the atomic K-N7 levels. Atomic Data Nucl. Data Tables 77(1), 1–56 (2001). CrossRefGoogle Scholar
  37. 37.
    H. Fellner-Feldegg, Ph.D. dissertation, Uppsala University, 1974Google Scholar
  38. 38.
    S. Mähl, M. Neumann, S. Dieckhoff et al., Characterisation of the VG ESCALAB instrumental broadening functions by XPS measurements at the Fermi edge of silver. J. Electron Spectrosc. Relat. Phenom. 85(3), 197–203 (1997). CrossRefGoogle Scholar
  39. 39.
    J.J. Olivero, R.L. Longbothum, Empirical fits to the Voigt line width: a brief review. J. Quant. Spectrosc. Radiat. Transf. 17(2), 233–236 (1977). CrossRefGoogle Scholar
  40. 40.
    Y. Ning, Q. Fu, Y. Li et al., A near ambient pressure photoemission electron microscope (NAP-PEEM). Ultramicroscopy 200, 105–110 (2019). CrossRefGoogle Scholar
  41. 41.
    R. Follath, M. Hävecker, G. Reichardt, K. Lips, J. Bahrdt, F. Schäfers and P. Schmid, presented at the Journal of Physics: Conference Series, 2013 (unpublished)Google Scholar
  42. 42.
    G. Materlik, T. Rayment, D.I. Stuart, Diamond light source: status and perspectives. Philos. Trans. A Math. Phys. Eng. Sci 373(2036), 20130161 (2015). CrossRefGoogle Scholar
  43. 43.
    X. Liu, W. Yang, Z. Liu, Recent progress on synchrotron-based in-situ soft X-ray spectroscopy for energy materials. Adv. Mater. 26(46), 7710–7729 (2014). CrossRefGoogle Scholar

Copyright information

© China Science Publishing & Media Ltd. (Science Press), Shanghai Institute of Applied Physics, the Chinese Academy of Sciences, Chinese Nuclear Society and Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Jun Cai
    • 1
    • 2
    • 3
  • Qiao Dong
    • 1
    • 3
  • Yong Han
    • 2
  • Bao-Hua Mao
    • 1
  • Hui Zhang
    • 1
  • Patrik G. Karlsson
    • 4
  • John Åhlund
    • 4
  • Ren-Zhong Tai
    • 5
  • Yi Yu
    • 2
    Email author
  • Zhi Liu
    • 1
    • 2
    Email author
  1. 1.State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information TechnologyChinese Academy of SciencesShanghaiChina
  2. 2.School of Physical Science and TechnologyShanghaiTech UniversityShanghaiChina
  3. 3.University of Chinese Academy of SciencesBeijingChina
  4. 4.Scienta OmicronUppsalaSweden
  5. 5.Shanghai Institute of Applied Physics, Chinese Academy of SciencesShanghai Synchrotron Radiation FacilityShanghaiChina

Personalised recommendations