Development of a scintillation detector for real-time measurement of space proton effective dose

  • Shou-Jie ZhangEmail author
  • Xin-Biao Jiang
  • Da Li
  • Xiao-Ren Yu
  • Liang-Liang Miao
  • Xiao-Jing Song
  • Yan Ma


In this study, a scintillation detector was developed to measure the space proton effective dose for astronauts based on the proton effective dose conversion coefficients provided by International Commission on Radiological Protection Report No. 116. In the Monte Carlo N-Particle Transport Code X (version 2.6.0) simulation process, by modulating the depth and solid angle of truncated conical holes in an iron shell from lower-energy protons to higher-energy protons, the energy deposited in the scintillator by isotropic protons was nearly proportional to the corresponding effective dose, with a maximum relative deviation of 13.28% at thirteen energy points in the energy range of 10–400 MeV. Therefore, the detector can monitor proton effective dose indirectly in real time by measuring the deposited energy. We calibrated the photoelectric conversion efficiency of the detector at the cobalt source, tested the response of the detector in the energy range of 30–100 MeV in unidirectional proton field, and validated the simulation with the experimental results.


Effective dose Space proton Scintillation detector ICRP Report No. 116 Deposited energy 



We would like to express our heartfelt gratitude to Prof. Tian-Jue Zhang and Prof. Yin-Long Lü of the China Institute of Atomic Energy for their support in the experiment. We would also like to thank the accelerator team for providing high-quality proton beams.


  1. 1.
    F.A. Cucinotta, F.K. Manuel, J. Jones et al., Space radiation and cataracts in astronauts. Aviat. Space Environ. Med. 156(5), 460–466 (2001).;2 CrossRefGoogle Scholar
  2. 2.
    F.A. Cucinotta, Space radiation risks for astronauts on multiple International Space Station missions. PLoS ONE 9(4), e96099 (2014). CrossRefGoogle Scholar
  3. 3.
    R.S. Bobby, M.W. Dale, Y. Tesfaigzi et al., Mechanistic basis for nonlinear dose-response relationships for low-dose radiation-induced stochastic effects. Nonlinearity Biol. Toxicol. Med. 1(1), 93–122 (2003). CrossRefGoogle Scholar
  4. 4.
    K. Baverstock, A.V. Karotki, Towards a unifying theory of late stochastic effects of ionizing radiation. Mutat. Res. 718(1–2), 1–9 (2010). CrossRefGoogle Scholar
  5. 5.
    R.S. Bobby, M.W. Dale, V.E. Walker, Low-dose radiation and genotoxic chemicals can protect against stochastic biological effects. Nonlinearity Biol. Toxicol. Med. 2(3), 185 (2004). CrossRefGoogle Scholar
  6. 6.
    L.W. Townsend, R.J.M. Fry, Radiation protection guidance for activities in low-earth orbit. Adv. Space Res. 30(4), 957–963 (2002). CrossRefGoogle Scholar
  7. 7.
    Y.N. Liu, H.S. Ye, W. Li et al., Review of measurement technique for dosimetry in space. J. Astronaut. Metrol. Meas. 33(5), 68–73 (2013). (in Chinese) CrossRefGoogle Scholar
  8. 8.
    E.R. Benton, E.V. Benton, A.L. Frank, Passive dosimetry aboard the Mir Orbital Station: external measurements. Radiat. Meas. 35(5), 457–471 (2002). CrossRefGoogle Scholar
  9. 9.
    O. Goossens, F. Vanhavere, N. Leys et al., Radiation dosimetry for microbial experiments in the International Space Station using different etched track and luminescent detectors. Radiat. Prot. Dosim. 120(1–4), 433–437 (2006). CrossRefGoogle Scholar
  10. 10.
    T. Doke, T. Hayashi, S. Nagaoka et al., Estimation of dose equivalent in STS-47 by a combination of TLDS and CR-39. Radiat. Meas. 24(1), 75–82 (1995). CrossRefGoogle Scholar
  11. 11.
    T. Hayashi, T. Doke, J. Kikuchi et al., Measurement of LET distribution and dose equivalent on board the Space Shuttle STS-65. Radiat. Meas. 26(6), 935–945 (1996). CrossRefGoogle Scholar
  12. 12.
    H. Yasuda, Effective dose measured with a life size human phantom in a low Earth orbit mission. J. Radiat. Res. 50(2), 89–96 (2009). CrossRefGoogle Scholar
  13. 13.
    H. Yasuda, D.B. Gautam, T. Komiyama et al., Effective dose equivalent on the Ninth Shuttle-Mir mission (STS-91). Radiat. Res. 154(6), 705–713 (2000).;2 CrossRefGoogle Scholar
  14. 14.
    G.D. Badhwar, W. Atwell, F.F. Badavi et al., Space radiation absorbed dose distribution in a human phantom. Radiat. Res. 157(1), 76–91 (2002).;2 CrossRefGoogle Scholar
  15. 15.
    G. Dietze, D.T. Bartlett, D.A. Cool et al., Assessment of radiation exposure of astronauts in Space, ICRP publication 123 (Oxford Britain, 2013). CrossRefGoogle Scholar
  16. 16.
    G.P. Ginet, T.P. O’Brien, D.L. Byers, AP-9/AE-9: new radiation specification models, Accessed 2 Apr 2016
  17. 17.
    F.B. Francis, Validation of the new trapped environment AE9/AP9/SPM at low Earth orbit. Adv. Space Res. 54(6), 917–928 (2014). CrossRefGoogle Scholar
  18. 18.
    N.P. Henss, W.E. Bolch, K.F. Eckerman et al., Conversion coefficients for radiological protection quantities for external radiation exposures, ICRP publication 116 (Oxford Britain, 2010). CrossRefGoogle Scholar
  19. 19.
    H.G. Menzel, C. Clement, P. DeLuca, Realistic reference phantoms: an ICRP/ICRU joint effort, ICRP publication 110 (Oxford Britain, 2009).
  20. 20.
    J. Valentin, Basic anatomical and physiological data for use in radiological protection: reference values, ICRP publication 89 (Oxford Britain, 2002). CrossRefGoogle Scholar
  21. 21.
    C.Z. Wang, W.Y. Luo, Y.Z. Zha et al., Monte-Carlo simulation of optimization choice of shielding materials for proton radiation in space. Radiat. Prot. 27(2), 79–86 (2007). (in Chinese) CrossRefGoogle Scholar
  22. 22.
    G.H. Shen, S.J. Wang, S.Y. Zhang et al., A particles’ direction detector on manned space II. Nucl. Electron. Detect. Technol. 32(5), 535–538 (2012). (in Chinese) CrossRefGoogle Scholar
  23. 23.
    Y. Kim, W. Atwell, A.J. Tylka et al., Radiation dose assessment of solar particle events with spectral representation at high energies for the improvement of radiation protection, in 38th COSPAR Scientific Assembly, Bremen, Germany (2010)Google Scholar
  24. 24.
    B. Fraboni, A. Cavallini, W. Dusi, Damage induced by ionizing radiation on CdZnTe and CdTe detectors. IEEE Trans. Nucl. Sci. 51(3), 1209–1215 (2004). CrossRefGoogle Scholar
  25. 25.
    J.R. Sabin, J. Oddershede, P. Sigmund, On the proton stopping power maximum in gases and vapours. Nucl. Instrum. Methods B 12(1), 80–83 (1985). CrossRefGoogle Scholar
  26. 26.
    L. Torrisi, Plastic scintillator investigations for relative dosimetry in proton-therapy. Nucl. Instrum. Methods B 170(3), 523–530 (2000). CrossRefGoogle Scholar
  27. 27.
    C.S. Ji, Handbook of nuclear radiation detectors and their experiment techniques (Atomic Energy Press, Beijing, 1990), p. 315. (in Chinese) Google Scholar
  28. 28.
    National Institute of Standards and Technology, Stopping-power and range tables for protons, Accessed 18 Oct 2016
  29. 29.
    C.X. Kan, Y.M. Hu, Y.W. Bao et al., Annual Report of HI-13 Tandem Accelerator in 2013, Annual Report of China Institute of Atomic Energy 2013, Beijing, China, June, 2014. (in Chinese) Google Scholar
  30. 30.
    B.P. Denise, MCNPX™ user’s manual. LANL USA, LA-CP-07-1473, 2008Google Scholar

Copyright information

© China Science Publishing & Media Ltd. (Science Press), Shanghai Institute of Applied Physics, the Chinese Academy of Sciences, Chinese Nuclear Society and Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Shou-Jie Zhang
    • 1
    • 2
    Email author
  • Xin-Biao Jiang
    • 1
    • 2
  • Da Li
    • 1
    • 2
  • Xiao-Ren Yu
    • 1
    • 2
  • Liang-Liang Miao
    • 1
    • 2
  • Xiao-Jing Song
    • 1
    • 2
    • 3
  • Yan Ma
    • 1
    • 2
  1. 1.Northwest Institute of Nuclear TechnologyXi’anChina
  2. 2.State Key Laboratory of Intense Pulsed Radiation Simulation and EffectXi’anChina
  3. 3.Xi’an Jiaotong UniversityXi’anChina

Personalised recommendations