Advertisement

Quantum dots enhanced Cerenkov luminescence imaging

  • Chang-Ran Geng
  • Yao Ai
  • Xiao-Bin TangEmail author
  • Di-Yun Shu
  • Chun-Hui Gong
  • Ming-Hua Du
  • Fa-Quan Ji
Article
  • 18 Downloads

Abstract

Cerenkov luminescence imaging (CLI) has been widely investigated for biological imaging. However, the luminescence generated from Cerenkov effect is relatively weak and has poor penetration ability in biological tissues. These limitations consequently hindered the clinical translation of CLI. In this study, we proposed an in vitro experimental study for the demonstration of quantum dots (QDs) configurations affected by the improvement of the signal intensity of CLI. Results revealed that the optimal concentrations were 0.1 mg/mL and 0.25 mg/mL for the studied CdSe/ZnS QDs with fluorescence emission peaks of 580 nm and 660 nm, respectively. The detected optical signal intensity with long-wavelength emission QDs were stronger than those with short-wavelength emission QDs. This study illustrates an experiment to study the effects of concentrations and fluorescence emission peaks of QDs on an enhanced optical signal for the external detection of CLI.

Keywords

Cerenkov luminescence imaging Quantum dots Optical signal Wavelength shift 

References

  1. 1.
    A.E. Spinelli, D. D’Ambrosio, L. Calderan et al., Cerenkov radiation allows in vivo optical imaging of positron emitting radiotracers. Phys. Med. Biol. 55, 483 (2009).  https://doi.org/10.1088/0031-9155/55/2/010 CrossRefGoogle Scholar
  2. 2.
    B. Brichard, A. Fernandez, H. Ooms et al., Fibre-optic gamma-flux monitoring in a fission reactor by means of Cerenkov radiation. Meas. Sci. Technol. 18, 3257 (2007).  https://doi.org/10.1088/0957-0233/18/10/S32 CrossRefGoogle Scholar
  3. 3.
    J.S. Cho, R. Taschereau, S. Olma et al., Cerenkov radiation imaging as a method for quantitative measurements of beta particles in a microfluidic chip. Phys. Med. Biol. 54, 6757 (2009).  https://doi.org/10.1088/0031-9155/54/22/001 CrossRefGoogle Scholar
  4. 4.
    A.K. Glaser, J.M. Andreozzi, S.C. Davis et al., Video-rate optical dosimetry and dynamic visualization of IMRT and VMAT treatment plans in water using Cherenkov radiation. Med. Phys. (2014).  https://doi.org/10.1118/1.4875704 CrossRefGoogle Scholar
  5. 5.
    R. Robertson, M.S. Germanos, C. Li et al., Optical imaging of Cerenkov light generation from positron-emitting radiotracers. Phys. Med. Biol. 54, N355 (2009).  https://doi.org/10.1088/0031-9155/54/16/N01 CrossRefGoogle Scholar
  6. 6.
    S.K. Pandey, J. Kaur, B. Easwaramoorthy et al., Multimodality imaging probe for positron emission tomography and fluorescence imaging studies. Mol. Imaging 13, 7290-2014 (2014).  https://doi.org/10.2310/7290.2014.00005 CrossRefGoogle Scholar
  7. 7.
    Y. Zhang, H. Hong, J.W. Engle et al., Positron emission tomography and optical imaging of tumor CD105 expression with a dual-labeled monoclonal antibody. Mol. Pharm. 9, 645–653 (2012).  https://doi.org/10.1021/mp200592m CrossRefGoogle Scholar
  8. 8.
    Z. Hu, X. Ma, X. Qu et al., Three-dimensional noninvasive monitoring iodine-131 uptake in the thyroid using a modified Cerenkov luminescence tomography approach. PLoS ONE 7, e37623 (2012).  https://doi.org/10.1371/journal.pone.0037623 CrossRefGoogle Scholar
  9. 9.
    M. Nahrendorf, E. Keliher, B. Marinelli et al., Hybrid PET-optical imaging using targeted probes. Proc. Natl. Acad. Sci. USA 107, 7910–7915 (2010).  https://doi.org/10.1073/pnas.0915163107 CrossRefGoogle Scholar
  10. 10.
    C. Gigliotti, L. Altabella, F. Boschi et al., Monte Carlo feasibility study for image guided surgery: from direct beta minus detection to Cerenkov luminescence imaging. J. Instrum. 11, P07021 (2016).  https://doi.org/10.1088/1748-0221/11/07/P07021 CrossRefGoogle Scholar
  11. 11.
    J.S. Klein, G.S. Mitchell, S.R. Cherry, Quantitative assessment of Cerenkov luminescence for radioguided brain tumor resection surgery. Phys. Med. Biol. 62, 4183 (2017).  https://doi.org/10.1088/1361-6560/aa6641 CrossRefGoogle Scholar
  12. 12.
    C.M. Carpenter, X. Ma, H. Liu et al., Cerenkov luminescence endoscopy: improved molecular sensitivity with β−-emitting radiotracers. J. Nucl. Med. 55, 1905 (2014).  https://doi.org/10.2967/jnumed.114.139105 CrossRefGoogle Scholar
  13. 13.
    S.-R. Kothapalli, H. Liu, J.C. Liao et al., Endoscopic imaging of Cerenkov luminescence. Biomed. Opt. Express 3, 1215–1225 (2012).  https://doi.org/10.1364/BOE.3.001215 CrossRefGoogle Scholar
  14. 14.
    H. Liu, C.M. Carpenter, H. Jiang et al., Intraoperative imaging of tumors using Cerenkov luminescence endoscopy: a feasibility experimental study. J. Nucl. Med. 53, 1579 (2012).  https://doi.org/10.2967/jnumed.111.098541 CrossRefGoogle Scholar
  15. 15.
    R.S. Dothager, R.J. Goiffon, E. Jackson et al., Cerenkov radiation energy transfer (CRET) imaging: a novel method for optical imaging of PET isotopes in biological systems. PLoS ONE 5, e13300 (2010).  https://doi.org/10.1371/journal.pone.0013300 CrossRefGoogle Scholar
  16. 16.
    J. Li, L.W. Dobrucki, M. Marjanovic et al., Enhancement and wavelength-shifted emission of Cerenkov luminescence using multifunctional microspheres. Phys. Med. Biol. 60, 727 (2015).  https://doi.org/10.1088/0031-9155/60/2/727 CrossRefGoogle Scholar
  17. 17.
    O. Volotskova, C. Sun, J.H. Stafford et al., Efficient radioisotope energy transfer by gold nanoclusters for molecular imaging. Small 11, 4002–4008 (2015).  https://doi.org/10.1002/smll.201500907 CrossRefGoogle Scholar
  18. 18.
    C. Zhou, G. Hao, P. Thomas et al., Near-infrared emitting radioactive gold nanoparticles with molecular pharmacokinetics. Angew. Chem. 124, 10265–10269 (2012).  https://doi.org/10.1002/anie.201203031 CrossRefGoogle Scholar
  19. 19.
    Y. Bernhard, B. Collin, R.A. Decréau, Inter/intramolecular Cherenkov radiation energy transfer (CRET) from a fluorophore with a built-in radionuclide. Chem. Commun. 50, 6711–6713 (2014).  https://doi.org/10.1039/c4cc01690d CrossRefGoogle Scholar
  20. 20.
    X. Cao, X. Chen, F. Kang et al., Intensity enhanced Cerenkov luminescence imaging using terbium-doped Gd2O2S microparticles. ACS. Appl. Mater. Interfaces 7, 11775–11782 (2015).  https://doi.org/10.1021/acsami.5b00432 CrossRefGoogle Scholar
  21. 21.
    X. Ma, F. Kang, F. Xu et al., Enhancement of Cerenkov luminescence imaging by dual excitation of Er3+, Yb3+-doped rare-earth microparticles. PLoS ONE 8, e77926 (2013).  https://doi.org/10.1371/journal.pone.0077926 CrossRefGoogle Scholar
  22. 22.
    D.L. Thorek, A. Ogirala, B.J. Beattie et al., Quantitative imaging of disease signatures through radioactive decay signal conversion. Nat. Med. 19, 1345 (2013).  https://doi.org/10.1038/nm.3323 CrossRefGoogle Scholar
  23. 23.
    F. Boschi, A.E. Spinelli, Quantum dots excitation using pure beta minus radioisotopes emitting Cerenkov radiation. RSC Adv. 2, 11049–11052 (2012).  https://doi.org/10.1039/c2ra22101b CrossRefGoogle Scholar
  24. 24.
    X. Michalet, F. Pinaud, L. Bentolila et al., Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307, 538–544 (2005).  https://doi.org/10.1126/science.1104274 CrossRefGoogle Scholar
  25. 25.
    X. Tang, X. Hou, D. Shu et al., Research on the interaction mechanism between quantum dots and radionuclides for the improvement of Cerenkov luminescence imaging. Sci. China Technol. Sci. 58, 1712–1716 (2015).  https://doi.org/10.1007/s11431-015-5897-x CrossRefGoogle Scholar
  26. 26.
    S. Rempel, A. Podkorytova, A. Rempel, Concentration quenching of fluorescence of colloid quantum dots of cadmium sulfide. Phys. Solid State 56, 568–571 (2014).  https://doi.org/10.1134/S1063783414030251 CrossRefGoogle Scholar
  27. 27.
    D.M. Willard, L.L. Carillo, J. Jung et al., CdSe–ZnS quantum dots as resonance energy transfer donors in a model protein–protein binding assay. Nano Lett. 1, 469–474 (2001).  https://doi.org/10.1021/nl015565n CrossRefGoogle Scholar
  28. 28.
    S.L. Jacques, Optical properties of biological tissues: a review. Phys. Med. Biol. 58, R37 (2013).  https://doi.org/10.1088/0031-9155/58/11/R37 CrossRefGoogle Scholar
  29. 29.
    K. Kwon, T. Son, K.-J. Lee et al., Enhancement of light propagation depth in skin: cross-validation of mathematical modeling methods. Lasers Med. Sci. 24, 605–615 (2009).  https://doi.org/10.1007/s10103-008-0625-4 CrossRefGoogle Scholar

Copyright information

© China Science Publishing & Media Ltd. (Science Press), Shanghai Institute of Applied Physics, the Chinese Academy of Sciences, Chinese Nuclear Society and Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Chang-Ran Geng
    • 1
    • 2
  • Yao Ai
    • 1
    • 2
  • Xiao-Bin Tang
    • 1
    • 2
    Email author
  • Di-Yun Shu
    • 1
    • 2
  • Chun-Hui Gong
    • 1
    • 2
  • Ming-Hua Du
    • 3
  • Fa-Quan Ji
    • 3
  1. 1.Department of Nuclear Science and EngineeringNanjing University of Aeronautics and AstronauticsNanjingChina
  2. 2.Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education InstitutionsNanjingChina
  3. 3.Affiliated Hospital of Nanjing University of TCMNanjingChina

Personalised recommendations