Advertisement

Theoretical analyses of chemical bonding in terminal EThF2 (E = O, S, Se, Te)

  • Yan-Li Li
  • Xiao-Gen Xiong
  • Hong-Tao LiuEmail author
Article
  • 24 Downloads

Abstract

Analyses of chemical bonding and geometric structures in species with chalcogen elements EThF2 (E = O, S, Se, Te) are performed by the density functional theory. Kohn–Sham molecular orbitals and Th–E bond lengths of these species both indicate multiple bond character for the terminal chalcogen complexes. This is also confirmed by natural bond orbital analyses using the one-electron density matrix generated by relativistic density functional calculations. Theoretical analyses indicate that electron donation from E to Th increases down the chalcogen group (O < S < Se < Te). These molecules can serve as examples of multiple bonding between actinide elements and selenium or tellurium.

Keywords

EThF2 Chemical bonding Natural bond orbital (NBO) 

References

  1. 1.
    A. Gunay, K.H. Theopold, C−H bond activations by metal oxo compounds. Chem. Rev. 110, 1060–1081 (2010).  https://doi.org/10.1021/cr900269x CrossRefGoogle Scholar
  2. 2.
    E. Barnea, M.S. Eisen, Organoactinides in catalysis. Coord. Chem. Rev. 250, 855–899 (2006).  https://doi.org/10.1016/j.ccr.2005.12.007 CrossRefGoogle Scholar
  3. 3.
    A.J. Gaunt, B.L. Scott, M.P. Neu, A molecular actinide–tellurium bond and comparison of bonding in [MIII{N(TePiPr2)2}3] (M = U, La)*. Angew. Chem. Int. Ed. 45, 1638–1641 (2006).  https://doi.org/10.1002/anie.200503372 CrossRefGoogle Scholar
  4. 4.
    C.Z. Wang, T. Bo, J.H. Lan et al., Ultrastable actinide endohedral borospherenes. Chem. Commun. 54, 2248–2251 (2018).  https://doi.org/10.1039/c7cc09837e CrossRefGoogle Scholar
  5. 5.
    Q.Y. Wu, Z.P. Cheng, J.H. Lan et al., Insight into the nature of M–C bonding in the lanthanide/actinide-biscarbene complexes: a theoretical perspective†. Dalton Trans. 47, 12718–12725 (2018).  https://doi.org/10.1039/c8dt02702a CrossRefGoogle Scholar
  6. 6.
    D.E. Smiles, G. Wu, P. Hrobárik et al., Use of 77Se and 125Te NMR spectroscopy to probe covalency of the actinide-chalcogen bonding in [Th(En){N(SiMe3)2}3] (E = Se, Te; n = 1, 2) and their oxo-uranium (VI) congeners. J. Am. Chem. Soc. 138, 814–825 (2016).  https://doi.org/10.1021/jacs.5b07767 CrossRefGoogle Scholar
  7. 7.
    M. Ringgold, D. Rehe, P. Hrobárik et al., Thorium cubanes-synthesis, solid-state and solution structures, thermolysis, and chalcogen exchange reactions. Inorg. Chem. 57, 7129–7141 (2018).  https://doi.org/10.1021/acs.inorgchem.8b00836 CrossRefGoogle Scholar
  8. 8.
    P. Hrobárik, M. Straka, P. Pyykkö, Computational study of bonding trends in the metalloactinyl series EThM and MThM’ (E = N, O, F+; M, M’ = Ir, Pt, Au+). Chem. Phys. Lett. 431, 6–12 (2006).  https://doi.org/10.1016/j.cplett.2006.08.144 CrossRefGoogle Scholar
  9. 9.
    E.A. Pedrick, P. Hrobarik, L.A. Seaman et al., Synthesis, structure and bonding of hexaphenyl thorium(IV): observation of a non-octahedral structure. Chem. Commun. 52, 689–692 (2016).  https://doi.org/10.1039/c5cc08265j CrossRefGoogle Scholar
  10. 10.
    Y. Gong, X.F. Wang, L. Andrews et al., Infrared spectroscopic and theoretical investigations of the OUF2 and OThF2 molecules with triple oxo bond character. Inorg. Chem. 51(12), 6983–6991 (2012).  https://doi.org/10.1021/ic3009128 CrossRefGoogle Scholar
  11. 11.
    X.F. Wang, L. Andrews, K.S. Thanthiriwatte et al., Infrared spectra of H2ThS and H2US in noble gas matrixes: enhanced H–An–S covalent bonding. Inorg. Chem. 52, 10275–10285 (2013).  https://doi.org/10.1021/ic400560k CrossRefGoogle Scholar
  12. 12.
    T. Vent-Schmidt, L. Andrews, K.S. Thanthiriwatte et al., Reaction of laser-ablated uranium and thorium atoms with H2Se: a rare example of selenium multiple bonding. Inorg. Chem. 54, 9761–9769 (2015).  https://doi.org/10.1021/acs.inorgchem.5b01383 CrossRefGoogle Scholar
  13. 13.
    R.G. Denning, Electronic structure and bonding in actinyl ions and their analogs. J. Phys. Chem. A 111(20), 4125–4143 (2007).  https://doi.org/10.1021/jp071061n CrossRefGoogle Scholar
  14. 14.
    M.P. Jensen, A.H. Bond, Comparison of covalency in the complexes of trivalent actinide and lanthanide cations. J. Am. Chem. Soc. 124(33), 9870–9877 (2002).  https://doi.org/10.1021/ja0178620 CrossRefGoogle Scholar
  15. 15.
    M.P. Jensen, A.H. Bond, Influence of aggregation on the extraction of trivalent lanthanide and actinide cations by purified Cyanex 272, Cyanex 301, and Cyanex 302. Radiochim. Acta 90(4), 205–209 (2002).  https://doi.org/10.1524/ract.2002.90.4_2002.205 CrossRefGoogle Scholar
  16. 16.
    D. Rehe, A.Y. Kornienko, T.J. Emge et al., Thorium compounds with bonds to sulfur or selenium: synthesis, structure, and thermolysis. Inorg. Chem. 55, 6961–6967 (2016).  https://doi.org/10.1021/acs.inorgchem.6b00645 CrossRefGoogle Scholar
  17. 17.
    W. Wu, D. Rehe, P. Hrobárik et al., Molecular thorium compounds with dichalcogenide ligands: systhesis, structure, 77Se NMR study, and thermolysis. Inorg. Chem. 57, 14821–14833 (2018).  https://doi.org/10.1021/acs.inorgchem.8b02555 CrossRefGoogle Scholar
  18. 18.
    J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865–3868 (1996).  https://doi.org/10.1103/PhysRevLett.77.3865 CrossRefGoogle Scholar
  19. 19.
    A. Weigand, X.Y. Cao, T. Hangele et al., Relativistic small-core pseudopotentials for actinium, thorium, and protactinium. J. Phys. Chem. A 118(13), 2519–2530 (2014).  https://doi.org/10.1021/jp500215z CrossRefGoogle Scholar
  20. 20.
    K.A. Peterson, Correlation consistent basis sets for actinides. I. The Th and U atoms. J. Chem. Phys. 142(7), 074105 (2015).  https://doi.org/10.1063/1.4907596 CrossRefGoogle Scholar
  21. 21.
    D.E. Woon, T.H. Dunning, Gaussian basis sets for use in correlated molecular calculations. III. The atoms aluminum through argon. J. Chem. Phys. 98, 1358 (1993).  https://doi.org/10.1063/1.464303 CrossRefGoogle Scholar
  22. 22.
    K.A. Peterson, D. Figgen, E. Goll et al., Systematically convergent basis sets with relativistic pseudopotentials. II. Small-core pseudopotentials and correlation consistent basis sets for the post-d group 16–18 elements. J. Chem. Phys. (2003).  https://doi.org/10.1063/1.1622924 CrossRefGoogle Scholar
  23. 23.
    E.A. Dolgopolova, O.A. Ejegbavwo, C.R. Martin et al., Multifaceted modularity: a key for stepwise building of hierarchical complexity in actinide metal-organic frameworks. J. Am. Chem. Soc. 139(46), 16852–16861 (2017).  https://doi.org/10.1021/jacs.7b09496 CrossRefGoogle Scholar
  24. 24.
    Y.L. Li, J.H. Zou, X.G. Xiong et al., Probing chemical bonding and electronic structures in ThO by anion photoelectron imaging and theoretical calculations. J. Phys. Chem. A 121, 2108–2113 (2017).  https://doi.org/10.1021/acs.jpca.6b11554 CrossRefGoogle Scholar
  25. 25.
    Y.L. Li, J.H. Zou, X.G. Xiong et al., Anion photoelectron spectroscopy and chemical bonding of ThO2 and ThO3 . J. Chem. Phys. 148, 244304 (2018).  https://doi.org/10.1063/1.5030142 CrossRefGoogle Scholar
  26. 26.
    E.J. Baerends, T. Ziegler, J. Autschbach et al., ADF 2017.106, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands. http://www.scm.com
  27. 27.
    E. Van Lenthe, E.J. Baerends, Optimized Slater-type basis sets for the elements 1–118. J. Comput. Chem. 24(9), 1142–1156 (2003).  https://doi.org/10.1002/jcc.10255 CrossRefGoogle Scholar
  28. 28.
    E.D. Glendening, J.K. Badenhoop, A.E. Reed et al., Theoretical Chemistry Institute, University of Wisconsin, Madison, WI (2013). http://nbo6.chem.wisc.edu/
  29. 29.
    V. Goncharov, M.C. Heaven, Spectroscopy of the ground and low-lying excited states of ThO+. J. Chem. Phys. 124, 064312 (2006).  https://doi.org/10.1063/1.2167356 CrossRefGoogle Scholar
  30. 30.
    L. Andrews, Y. Gong, B.Y. Liang et al., Matrix infrared spectra and theoretical studies of thorium oxide species: thOx and Th2Oy. J. Phys. Chem. A 115, 14407–14416 (2011).  https://doi.org/10.1021/jp208926m CrossRefGoogle Scholar
  31. 31.
    A. Le, M.C. Heaven, T.C. Steimle, The permanent electric dipole moment of thorium sulfide. ThS. J. Chem. Phys. 140, 024307 (2014).  https://doi.org/10.1063/1.4861045 CrossRefGoogle Scholar
  32. 32.
    B. Liang, L. Andrews, Matrix infrared spectra and quasirelativistic DFT studies of ThS and ThS2. J. Phys. Chem. A 106(16), 4038–4041 (2002).  https://doi.org/10.1021/jp014301m CrossRefGoogle Scholar
  33. 33.
    L. Andrews, K.S. Thanthiriwatte, X.F. Wang et al., Thorium fluorides ThF, ThF2, ThF3, ThF4, ThF3(F2), and ThF5 characterized by infrared spectra in solid argon and electronic structure and vibrational frequency calculations. Inorg. Chem. 52, 8228–8233 (2013).  https://doi.org/10.1021/ic401107w CrossRefGoogle Scholar
  34. 34.
    K.S. Thanthiriwatte, X.F. Wang, L. Andrews et al., Properties of ThFx from infrared spectra in solid argon and neon with supporting electronic structure and thermochemical calculations. J. Phys. Chem. A 118, 2107–2119 (2014).  https://doi.org/10.1021/jp412818r CrossRefGoogle Scholar
  35. 35.
    H.-J. Werner, P.J. Knowles, G. Knizia et al., M. MOLPRO, Version 2012.1, A Package of ab Initio Programs. http://www.molpro.net
  36. 36.
    P. Pyykkö, S. Riedel, M. Patzschke, Triple-bond covalent radii. Chem. Eur. J. 11, 3511–3520 (2005).  https://doi.org/10.1002/chem.200401299 CrossRefGoogle Scholar

Copyright information

© China Science Publishing & Media Ltd. (Science Press), Shanghai Institute of Applied Physics, the Chinese Academy of Sciences, Chinese Nuclear Society and Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Shanghai Institute of Applied PhysicsChinese Academy of SciencesShanghaiChina
  2. 2.University of Chinese Academy of SciencesBeijingChina
  3. 3.Sino-French Institute of Nuclear Engineering and TechnologySun Yat-Sen UniversityZhuhaiChina

Personalised recommendations