Non-equilibrium ignition criterion for magnetized deuterium–tritium fuel

  • E. GhorbanpourEmail author
  • A. Ghasemizad
  • S. Khoshbinfar


In this paper, non-equilibrium ignition conditions for magnetized cylindrical deuterium–tritium plasma in the presence of an axial magnetic field have been investigated. It is expected that temperature imbalance between ions and electrons as well as the axial magnetic field will relax the threshold of ignition conditions. Therefore, ignition conditions for this model are derived numerically involving the energy balance equation at the stagnation point. It has been derived using parametric space including electron and ion temperature (Te, Ti), areal density (ρR), and seed magnetic field-dependent free parameters of B/ρ, mB, and BR. For B/ρ < 106 G cm3 g−1, mB < 4 × 104 G cm g−1, and BR < 3 × 105 G cm, the minimum fuel areal density exceeds between ρR > 0.002 g cm−2, ρR > 0.25 g cm−2, and ρR > 0.02 g cm−2, respectively. The practical equilibrium conditions also addressed which is in good agreement with the corresponding one-temperature magnetized mode proposed in previous studies. Moreover, it has been shown that the typical criterion of BR ≥ (6.13–4.64) × 105 G cm would be expectable. It is also confirmed that the minimum product of areal density times fuel temperature in equilibrium model is located in the range of T = 6–8 keV for all these free parameters, depending on the magnitude of the magnetic field. This is the entry point for the non-equilibrium model consistent with equilibrium model.


Magnetized plasma Two-temperature model Ion–electron non-equilibrium Axial magnetic field Ignition criteria 

List of symbols


Mass density (g cm−3)

R ≡ Rstag

Cylinder radius at stagnation (cm)


Number density (cm−3)


Electron number density (cm−3)


Ion number density (cm−3)


Deuteron density (cm−3)


Triton density (cm−3)


Electron temperature (keV)


Ion temperature (keV)


Magnetic field (G)


Birth velocity of alpha particle (cm s−1)


Electron cyclotron frequency (s−1)


Larmor frequency of alpha particle (s−1)


Ion cyclotron frequency (s−1)


Speed of light (cm s−1)


Unit charge (statC)


Electron mass (g)


Ion mass (g)


Alpha mass (g)


Atomic number (-)


Alpha atomic number (-)


Fusion energy (erg)


Alpha particle energy (erg)


Neutron energy (erg)


Fraction of alpha energy deposition (none)


Mean free path of alpha particle (cm)


Larmor radius of alpha particle (cm)


Ratio of cylinder radius to mean free path of alpha particle (none)


Ratio of cylinder radius to Larmor radius of alpha particle (none)


Boltzmann constant (erg keV−1)


Fusion power density (erg cm−3 s−1)


DT fusion power density (erg cm−3 s−1)


DT averaged reactivity (cm3 s−1)


Bremsstrahlung power density (erg cm−3 s−1)


Heat conduction power density loss (erg cm−3 s−1)


Planck constant (erg s)


Braginskii thermal conductivity for electrons (cm−1 s−1)


Braginskii thermal conductivity for ions (cm−1 s−1)


Collision time (s)


  1. 1.
    R.C. Kirkpatrick, I.R. Lindemuth, M.S. Ward, Magnetized target fusion: an overview. Fusion Technol. 27(3), 201–214 (1995). CrossRefGoogle Scholar
  2. 2.
    C. Yamanaka, Inertial confinement fusion: the quest for ignition and energy gain using indirect drive. Nucl. Fusion 39, 825 (1999). CrossRefGoogle Scholar
  3. 3.
    S. Atzeni, J. Meyer-ter-Vehn, The Physics of Inertial Fusion: BeamPlasma Interaction, Hydrodynamics, Hot Dense Matter (Oxford University Press, New York, 2004), pp. 35–39CrossRefGoogle Scholar
  4. 4.
    R.C. Kirkpatrick, HEDP and new directions for fusion energy. High Energy Density Phys. 6, 207–209 (2010). CrossRefGoogle Scholar
  5. 5.
    I.R. Lindemuth, An extended study of the ignition design space of magnetized target fusion. Phys. Plasmas 24, 055602 (2017). CrossRefGoogle Scholar
  6. 6.
    I.R. Lindemuth, R.E. Siemon, The fundamental parameter space of controlled thermonuclear fusion. Am. J. Phys. 77, 407–416 (2009). CrossRefGoogle Scholar
  7. 7.
    M. Sweeney, A. Farnsworth Jr., High-gain, low-intensity ICF targets for a charged-particle beam fusion driver. Nucl. Fusion 21, 41 (1981). CrossRefGoogle Scholar
  8. 8.
    I. Lindemuth, R. Kirkpatrick, Parameter space for magnetized fuel targets in inertial confinement fusion. Nucl. Fusion 23, 263 (1983). CrossRefGoogle Scholar
  9. 9.
    I. Lindemuth, R. Reinovsky, R. Chrien, et al., Joint US/Russian plasma formation experiments for magnetic compression/magnetized target fusion (MAGO/MTF), in Digest of Technical Papers. Tenth IEEE International Pulsed Power Conference, Albuquerque, NM, USA, vol. 1 (1995), pp. 601–606.
  10. 10.
    A.B. Sefkow, S. Slutz, J. Koning et al., Design of magnetized liner inertial fusion experiments using the Z facility. Phys. Plasmas 21, 072711 (2014). CrossRefGoogle Scholar
  11. 11.
    K. Hahn, G.A. Chandler, C.L. Ruiz et al., Fusion-neutron measurements for magnetized liner inertial fusion experiments on the Z accelerator. J. Phys: Conf. Ser. 717, 012020 (2016). CrossRefGoogle Scholar
  12. 12.
    A. Kemp, M. Basko, J. Meyer-ter-Vehn, Magnetized cylindrical targets for heavy ion fusion. Nucl. Instrum. Methods Phys. Res. Sect. A 464, 192–195 (2001). CrossRefGoogle Scholar
  13. 13.
    D. Kilcrease, R. Kirkpatrick, Magnetized fuel inertial confinement fusion. Nucl. Fusion 28, 1465 (1988). CrossRefGoogle Scholar
  14. 14.
    A.J. Kemp, M.M. Basko, J. Meyer-ter-Vehn, Implosion and ignition of magnetized cylindrical targets driven by heavy-ion beams. Nucl. Fusion 43, 16 (2002). CrossRefGoogle Scholar
  15. 15.
    I.R. Lindemuth, The ignition design space of magnetized target fusion. Phys. Plasmas 22, 122712 (2015). CrossRefGoogle Scholar
  16. 16.
    R. Ramis, J. Meyer-Ter-Vehn, On thermonuclear burn propagation in a pre-compressed cylindrical DT target ignited by a heavy ion beam pulse. Laser Part. Beams 32, 41–47 (2014). CrossRefGoogle Scholar
  17. 17.
    M. Basko, M. Churazov, A. Aksenov, Prospects of heavy ion fusion in cylindrical geometry. Laser Part. Beams 20, 411–414 (2002). CrossRefGoogle Scholar
  18. 18.
    M. Widner, J. Chang, A. Farnsworth et al., Neutron-production from relativistic electron-beam targets. in Bulletin of the American Physical Society, American Institute of Physics Circulation and Fulfillment Division, 500 Sunnyside Blvd, Woodbury, NY 117972999 (1977), pp. 1139–1139.
  19. 19.
    R. Jones, W. Mead, The physics of burn in magnetized deuterium-tritium plasmas: spherical geometry. Nucl. Fusion 26, 127 (1986). CrossRefGoogle Scholar
  20. 20.
    S.A. Slutz, R.A. Vesey, High-gain magnetized inertial fusion. Phys. Rev. Lett. 108, 025003 (2012). CrossRefGoogle Scholar
  21. 21.
    P. Schmit, P. Knapp, S. Hansen et al., Understanding fuel magnetization and mix using secondary nuclear reactions in magneto-inertial fusion. Phys. Rev. Lett. 113(15), 155004 (2014). CrossRefGoogle Scholar
  22. 22.
    K. Schoenberg, R. Siemon, Magnetized target fusion, in A Proof-of-Principle Research Proposal (Los Alamos National Lab, NM, US, 1998).
  23. 23.
    G.A. Wurden, S.C. Hsu, T.P. Intrator et al., Magneto-inertial fusion. J. Fusion Energy 35, 69–77 (2016). CrossRefGoogle Scholar
  24. 24.
    S.C. Hsu, S.J. Langendorf, Magnetized plasma target for plasma-jet-driven magneto-inertial fusion. J. Fusion Energy 38, 182–198 (2018). CrossRefGoogle Scholar
  25. 25.
    J. Davies, R. Betti, P.Y. Chang et al., The importance of electrothermal terms in Ohm’s law for magnetized spherical implosions. Phys. Plasmas 22, 112703 (2015). CrossRefGoogle Scholar
  26. 26.
    M. Basko, Magnetized implosions driven by intense ion beams. Phys. Plasmas 7, 4579–4589 (2000). CrossRefGoogle Scholar
  27. 27.
    M. Basko, J. Maruhn, T. Schlegel, Hydrodynamic instability of shells accelerated by direct ion beam heating. Phys. Plasmas 9, 1348–1356 (2002). CrossRefGoogle Scholar
  28. 28.
    A. Kemp, M. Basko, J. Meyer-ter-Vehn, Ignition conditions for magnetically insulated tamped ICF targets in cylindrical geometry. Nucl. Fusion 41, 235 (2001). CrossRefGoogle Scholar
  29. 29.
    A.J. Kemp, Magnetized Cylindrical Implosions Driven by Heavy ion Beams. Ph.D. Thesis, Technische Universität München (2001)Google Scholar
  30. 30.
    T. Intrator, S.Y. Zhang, J.H. Degnan et al., A high density field reversed configuration (FRC) target for magnetized target fusion: first internal profile measurements of a high density FRC. Phys. Plasmas 11, 2580–2585 (2004). CrossRefGoogle Scholar
  31. 31.
    I. Lindemuth, R. Kirkpatrick, The promise of magnetized fuel: inertial confinement fusion with existing driver technology. Atomkernenerg/Kerntech 45, 9–13 (1984)Google Scholar
  32. 32.
    M. Basko, A. Kemp, J. Meyer-ter-Vehn, Ignition conditions for magnetized target fusion in cylindrical geometry. Nucl. Fusion 40, 59 (2000). CrossRefGoogle Scholar
  33. 33.
    M. Temporal, A. Piriz, N. Grandjouan et al., Numerical analysis of a multilayered cylindrical target compression driven by a rotating intense heavy ion beam. Laser Part. Beams 21, 609–614 (2003). CrossRefGoogle Scholar
  34. 34.
    O.V. Gotchev, N.W. Jang, J.P. Knauer et al., Magneto-inertial approach to direct-drive laser fusion. J. Fusion Energy 27, 25–31 (2008). CrossRefGoogle Scholar
  35. 35.
    S. Eliezer, Z. Henis, N. Nissim et al., Introducing a two temperature plasma ignition in inertial confined targets under the effect of relativistic shock waves: the case of DT and pB 11. Laser Part. Beams 33, 577–589 (2015). CrossRefGoogle Scholar
  36. 36.
    Z. Fan, J. Liu, B. Liu et al., Ignition conditions relaxation for central hot-spot ignition with an ion-electron non-equilibrium model. Phys. Plasmas 23, 010703 (2016). CrossRefGoogle Scholar
  37. 37.
    Z. Fan, Y. Liu, B. Liu et al., Non-equilibrium between ions and electrons inside hot spots from National Ignition Facility experiments. Matter Radiat. Extremes 2, 3–8 (2017). CrossRefGoogle Scholar
  38. 38.
    J.W. Li, L. Chang, Y.S. Li et al., Transition from equilibrium ignition to non-equilibrium burn for ICF capsules surrounded by a high-Z pusher. Nucl. Fusion 51, 063005 (2011). CrossRefGoogle Scholar
  39. 39.
    Z. Fan, X. He, J. Liu et al., A wedged-peak-pulse design with medium fuel adiabat for indirect-drive fusion. Phys. Plasmas 21, 100705 (2014). CrossRefGoogle Scholar
  40. 40.
    F.F. Chen, S.E. Von Goeler, Introduction to Plasma Physics and Controlled Fusion Volume 1: Plasma Physics (Springer, Berlin, 1983), pp. 6–7Google Scholar
  41. 41.
    S. Braginskii, Transport Processes in a Plasma, Consultants Bureau (New York, 1965), pp. 215–249Google Scholar
  42. 42.
    C. Cereceda, C. Deutsch, M. De Peretti et al., Kinetic theory of alpha particles production in a dense and strongly magnetized plasma. Phys. Plasmas 7, 4515–4533 (2000). CrossRefGoogle Scholar
  43. 43.
    H.-S. Bosch, G. Hale, Improved formulas for fusion cross-sections and thermal reactivities. Nucl. Fusion 32, 611 (1992). CrossRefGoogle Scholar
  44. 44.
    B. Zohuri, Inertial Confinement Fusion Driven Thermonuclear Energy (Springer, Cham, 2017), pp. 146–147CrossRefGoogle Scholar
  45. 45.
    W.A. Fowler, G.R. Caughlan, B.A. Zimmerman, Thermonuclear reaction rates. Ann. Rev. Astron. Astrophys. 5, 525–570 (1967). CrossRefGoogle Scholar
  46. 46.
    R. Betti, A. Christopherson, B. Spears et al., Alpha heating and burning plasmas in inertial confinement fusion. Phys. Rev. Lett. 114, 255003 (2015). CrossRefGoogle Scholar
  47. 47.
    M.C. Hermann, M.E. Cuneo, D.B. Sinars et al., Magnetically driven implosions for inertial confinement fusion at Sandia National Laboratories. IEEE Trans. Plasma Sci. 40, 3222–3245 (2012). CrossRefGoogle Scholar
  48. 48.
    M. Basko. Inertial confinement fusion with magnetized fuel in cylindrical targets, in Rep. EURCEA-FC 1645, CEA Cadarache (1998)Google Scholar

Copyright information

© China Science Publishing & Media Ltd. (Science Press), Shanghai Institute of Applied Physics, the Chinese Academy of Sciences, Chinese Nuclear Society and Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of Physics, Faculty of ScienceUniversity of GuilanRashtIran

Personalised recommendations