Assessment of the power deposition on the MEGAPIE spallation target using the GEANT4 toolkit

  • Abdesslam LamrabetEmail author
  • Abdelmajid Maghnouj
  • Jaouad Tajmouati
  • Mohamed Bencheikh


This work aims at evaluating the reliability of the GEANT4 (GEometry ANd Tracking 4) Monte Carlo (MC) toolkit in calculating the power deposition on the Megawatt Pilot Experiment (MEGAPIE), the first liquid–metal spallation target worldwide. A new choice of codes to study and optimize this target is provided. The evaluation of the GEANT4 toolkit is carried out in comparison with the MCNPX and FLUKA MC codes. The MEGAPIE is an international project led by the Paul Scherrer Institute in Switzerland. It aims to demonstrate the safe operation of an intense neutron source to power the next generation of nuclear reactors, accelerator-driven systems (ADSs). In this study, we used the GEANT4 MC toolkit to calculate the power deposited by fast protons on the MEGAPIE target. The calculation focuses on several structures and regions. The predictions of our calculations were compared and discussed with that of the MCNPX and FLUKA codes, adopted by the MEGAPIE project. The comparison shows that there is a very good agreement between our results and those of the reference codes.


GEANT4 Simulation MEGAPIE target Spallation Power deposition 



The calculations for this simulation were carried out using the national grid of calculation “MaGrid” managed by the National Center of Scientific and Technological Research (CNRST) in Morocco. The authors are grateful to the staff of “MaGrid,” in particular Ms. Bouchra RAHIM, a computer engineer, for her availability and assistance with computer work.


  1. 1.
    C. Latge, F.Groeschel, P. Agostini et al., Megapie spallation target: design, implementation and preliminary tests of the first prototypical spallation target for future ADS. HAL: in2p3-00290482v1Google Scholar
  2. 2.
    G.S. Bauer, M. Salvatores, G. Heusener, MEGAPIE a 1 MW pilot experiment for a liquid metal spallation target. J. Nucl. Mater. 296, 17–35 (2001). CrossRefGoogle Scholar
  3. 3.
    C. Fazio, F. Gröschel, W. Wagner et al., The MEGAPIE-TEST project: supporting research and lessons learned in first-of-a-kind spallation target technology. Nucl. Eng. Des. 238(6), 1471–1495 (2008). CrossRefGoogle Scholar
  4. 4.
    S. Agostinelli, J. Allison, K. Amako et al., GEANT4—a simulation toolkit. Nucl. Instrum. Methods A 506, 250–303 (2003). CrossRefGoogle Scholar
  5. 5.
    J. Allison, K. Amako, J. Apostolakis et al., GEANT4 developments and applications. IEEE Trans. Nucl. Sci. 53, 270–278 (2006). CrossRefGoogle Scholar
  6. 6.
    J. Apostolakis, M. Asai, A.G. Bogdanov et al., Geometry and physics of the GEANT4 toolkit for high and medium energy applications. Radiat. Phys. Chem. 78, 859–873 (2009). CrossRefGoogle Scholar
  7. 7.
    L.S. Waters, ed., MCNPX Users’s Manual Version 2.4.0, LA-CP-02-408, (Los Alamos National Laboratory, 2002)Google Scholar
  8. 8.
    A. Fassò et al., in FLUKA: status and prospective for hadronic applications, eds. by A. Kling, F. Barao, M. Nakagawa et al. Proceedings of the Monte Carlo 2000 Conference (2000) (Springer, 2001) pp. 955–960Google Scholar
  9. 9.
    A. Fassò, A. Ferrari, P.R. Sala, Electron-photon transport in FLUKA: status, in Advanced Monte Carlo for Radiation Physics, Particle Transport Simulation and Applications, ed. by A. Kling, F. Barao, M. Nakagawa, et al. (Springer, Berlin, 2001), pp. 159–164. CrossRefGoogle Scholar
  10. 10.
    L. Zanini et al., Summary Report for MEGAPIE R&D Task Group X9 (PSI Bericht, 05-12, ISSN 1019-06432005)Google Scholar
  11. 11.
    G. Santin, D. Strul, D. Lazaro et al., GATE: a GEANT4-based simulation platform for PET and SPECT integrating movement and time management. IEEE Trans. Nucl. Sci. 50(5), 1516–1521 (2003). CrossRefGoogle Scholar
  12. 12.
    D. Strulab, G. Santin, D. Lazaro et al., GATE: a PET/SPECT general-purpose simulation platform. Nucl. Phys. B 125, 75–79 (2003). CrossRefGoogle Scholar
  13. 13.
    Y. Malyshkin, I. Pshenichnov, I. Mishustin et al., Neutron production and energy deposition in fissile spallation targets studied with GEANT4 toolkit. Nucl. Instrum. Methods B 289, 79–90 (2012). CrossRefGoogle Scholar
  14. 14.
    Y. Malyshkin, I. Pshenichnov, I. Mishustin et al., Modeling spallation reactions in tungsten and uranium targets with the GEANT4 toolkit. EPJ Web Conf. 21, 10006 (2012). CrossRefGoogle Scholar
  15. 15.
    Y. Malyshkin, I. Pshenichnov, I. Mishustin et al., Monte Carlo modeling of spallation targets containing uranium and americium. Nucl. Instrum. Methods B 334, 8–17 (2014). CrossRefGoogle Scholar
  16. 16.
    I. Mishustin, Y. Malyshkin, I. Pshenichnov et al., Possible production of neutron-rich heavy nuclei in fissile spallation targets, in Nuclear Physics: Present and Future FIAS International Science Series, ed. by W. Greiner (Springer, Cham, 2015), pp. 151–161. CrossRefGoogle Scholar
  17. 17.
  18. 18.
    J. EL Bakkali, T. El Bardouni, Validation of MC GEANT4 code for a 6 MV Varian linac. J. King Saud Univ. Sci. 29(1), 106–113 (2017). CrossRefGoogle Scholar
  19. 19.
    B. Schmidt, J. González-Dominguez, C. Hundt, et al., C++ 11 Multithreading, Parallel Programming, Chap. 4, (2018) pp. 77–133.
  20. 20.
    A. Lamrabet, A. Maghnouj, J. Tajmouati, GEANT4 modeling of the international MEGAPIE experiment. Adv. Stud. Theor. Phys. 11(12), 567–575 (2017). CrossRefGoogle Scholar
  21. 21.
  22. 22.
    CLHEP—A Class Library for High Energy Physics. Accessed 10 Mar 2019
  23. 23.
    ROOT a Data analysis Framework. Accessed 10 Mar 2019
  24. 24.
    Qt | Cross-platform software developement for embedded & desktop. Accessed 10 Mar 2019
  25. 25.
    S.L. Meo, M.A. Cortés-Giraldo, C. Massimi et al., GEANT4 simulations of the n_TOF spallation source and their benchmarking. Eur. Phys. J. A 51, 160 (2015). CrossRefGoogle Scholar
  26. 26.
    B. Andersson, G. Gustafson, B. Nilsson-Almqvist et al., A model for low-p T hadronic reactions with generalizations to hadron-nucleus and nucleus-nucleus collisions. Nucl. Phys. B 281, 289–309 (1987). CrossRefGoogle Scholar
  27. 27.
    H. Pi, An event generator for interactions between hadrons and nuclei—FRITIOF version 7.0. Comput. Phys. Commun. 71, 173–192 (1992). CrossRefGoogle Scholar
  28. 28.
    A. Boudard, J. Cugnon, J.-C. David et al., New potentialities of the Liège intranuclear cascade model for reactions induced by nucleons and light charged particles. Phys. Rev. C 87, 014606 (2013). CrossRefGoogle Scholar
  29. 29.
    D. Mancusi, A. Boudard, J. Cugnon et al., Extension of the Liège intranuclear-cascade model to reactions induced by light nuclei. Phys. Rev. C 90, 054602 (2014). CrossRefGoogle Scholar
  30. 30.
    J.M. Quesada, V. Ivanchenko, A. Ivanchenko et al., Recent developments in pre-equilibrium and de-excitation models in GEANT4. Prog. Nucl. Sci. Technol. 2, 936–941 (2011). CrossRefGoogle Scholar
  31. 31.
    A. Boudard, J. Cugnon, S. Leray et al., Intranuclear cascade model for a comprehensive description of spallation reaction data. Phys. Rev. C 66, 044615 (2002). CrossRefGoogle Scholar
  32. 32.
    P. Kaitaniemi, A. Boudard, S. Leray et al., INCL intra-nuclear cascade and ABLA de-excitation models in GEANT4. Prog. Nucl. Sci. Technol. 2, 788–793 (2011). CrossRefGoogle Scholar
  33. 33.
    D. Filges, F. Goldenbaum, Handbook of Spallation Research. Theory, Experiments and Applications (Wiley, New York, 2009). CrossRefGoogle Scholar
  34. 34.
    J.J. Gaimard, K.H. Schmidt, A reexamination of the abrasion-ablation model for the description of the nuclear fragmentation reaction. Nucl. Phys. A 531(3–4), 709–745 (1991). CrossRefGoogle Scholar
  35. 35.
    A.R. Junghans, M. de Jong, H.-G. Clerc et al., Projectile-fragment yields as a probe for the collective enhancement in the nuclear level density. Nucl. Phys. A 629(3–4), 635–655 (1998). CrossRefGoogle Scholar
  36. 36.
    J. Benlliure, A. Grewe, M. de Jong et al., Calculated nuclide production yields in relativistic collisions of fissile nuclei. Nucl. Phys. A 628(3), 458–478 (1998). CrossRefGoogle Scholar
  37. 37.
  38. 38.
    J.C. David, Spallation reactions: a successful interplay between modeling and applications. Eur. Phys. J. A 51, 68 (2015). CrossRefGoogle Scholar
  39. 39.
    A.R. García, E. Mendoza, D. Cano-Ott, Validation of the Thermal Neutron Physics in GEANT4 (Department of Energy, Madrid, 2013)Google Scholar
  40. 40. Accessed 10 Mar 2019
  41. 41.
    A. Cadiou, A. Guertin, T. Kirchner, et al, Final Summary Report on Target Design, (2004) pp. 13–47. HAL:in2p3-00025250v1Google Scholar
  42. 42.
    T. Kirchner et al., MEGAPIE target design and dimensioning. proceedings of the 4 th MEGAPIE Technical Review Meeting, March 18–19, 2003, Paris. Report FZKA 6876. HAL:hal-01082506v1Google Scholar
  43. 43.
    L. Zanini, H.U. Aebersold, K. Berg, et al., Neutronic and Nuclear Post-Test Analysis of MEGAPIE, Part I, Chap 2, PSI Bericht Nr. 08–04, (2008), ISSN: 1019-0643Google Scholar
  44. 44.
    Y. Foucher, Nuclear Assessment of the MEGAPIE Target, in Proceedings of 4th MEGAPIE Technical Review Meet, FZK Science Report, FZKA 6876 (2003) pp. 149–161Google Scholar

Copyright information

© China Science Publishing & Media Ltd. (Science Press), Shanghai Institute of Applied Physics, the Chinese Academy of Sciences, Chinese Nuclear Society and Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Abdesslam Lamrabet
    • 1
    • 2
    Email author
  • Abdelmajid Maghnouj
    • 1
  • Jaouad Tajmouati
    • 1
  • Mohamed Bencheikh
    • 1
  1. 1.Faculty of Sciences Dhar El Mahraz, Laboratory of Integration of Systems and Advanced TechnologiesUniversity Sidi Mohamed Ben AbdellahFesMorocco
  2. 2.El HajebMorocco

Personalised recommendations