Adsorption and desorption of hydrogen on/from single-vacancy and double-vacancy graphenes

  • Xi-Jun Wu
  • Ze-Jie Fei
  • Wen-Guan LiuEmail author
  • Jie Tan
  • Guang-Hua Wang
  • Dong-Qin Xia
  • Ke Deng
  • Xue-Kun Chen
  • De-Tao Xiao
  • Sheng-Wei WuEmail author
  • Wei Liu


Adsorption and desorption of hydrogen on/from single-vacancy and double-vacancy graphenes were studied by means of first-principles calculations. The structure and stability of continuous hydrogenation in single vacancy were investigated. Several new stable structures were found, along with their corresponding energy barriers. In double-vacancy graphene, the preferred sites of H atoms were identified, and H2 molecule desorption and adsorption of from/on were calculated from the energy barriers. This work provides a systematic and comprehensive understanding of hydrogen behavior on defected graphene.


Hydrogen Graphene Single vacancy Double vacancy Adsorption Desorption First-principles calculation 


  1. 1.
    I. Staffell, The energy and fuel data sheet. 2011.
  2. 2.
    P.D. Jongh, M. Allendorf, J.J. Vajo et al., Nanoconfined light metal hydrides for reversible hydrogen storage. MRS Bull. 38, 488–494 (2013). CrossRefGoogle Scholar
  3. 3.
    L. Pickering, J. Li, D. Reed et al., Ti–V–Mn based metal hydrides for hydrogen storage. J. Alloys Compd. 580, 233–237 (2013). CrossRefGoogle Scholar
  4. 4.
    A.M. Jorge, E. Prokofiev, G.L. de Lima et al., An investigation of hydrogen storage in a magnesium-based alloy processed by equal-channel angular pressing. Int. J. Hydrogen Energy 38, 8306–8312 (2013). CrossRefGoogle Scholar
  5. 5.
    D.L. Chao, C.L. Zhong, Z.W. Ma et al., Improvement in high-temperature performance of Co-free high-Fe AB 5-type hydrogen storage alloys. Int. J. Hydrogen Energy 37, 12375–12383 (2012). CrossRefGoogle Scholar
  6. 6.
    C.N. Peng, The effects of hydrogen on the helium behavior in palladium. Nucl. Sci. Tech. 27, 106 (2016). CrossRefGoogle Scholar
  7. 7.
    W.G. Liu, Y. Qian, D.X. Zhang et al., Theoretical study of the interaction between hydrogen and 4d alloying atom in nickel. Nucl. Sci. Tech. 28, 82 (2017). CrossRefGoogle Scholar
  8. 8.
    P. Reunchan, S.H. Jhi, Metal-dispersed porous graphene for hydrogen storage. Appl. Phys. Lett. 98, 93–103 (2011). CrossRefGoogle Scholar
  9. 9.
    Y. Xia, Z. Yang, Y. Zhu, Porous carbon-based materials for hydrogen storage: advancement and challenges. J. Mater. Chem. A 1, 9365–9381 (2013). CrossRefGoogle Scholar
  10. 10.
    X.K. Chen, J. Liu, Z.H. Peng et al., A wave-dominated heat transport mechanism for negative differential thermal resistance in graphene/hexagonal boron nitride heterostructures. Appl. Phys. Lett. 110, 091907 (2017). CrossRefGoogle Scholar
  11. 11.
    X.K. Chen, Z.X. Xie, W.X. Zhou et al., Thermal rectification and negative differential thermal resistance behaviors in graphene/hexagonal boron nitride heterojunction. Carbon 100, 492–500 (2016). CrossRefGoogle Scholar
  12. 12.
    M. Pumera, Graphene-based nanomaterials for energy storage. Energy Environ. Sci. 4, 668–674 (2011). CrossRefGoogle Scholar
  13. 13.
    S. Patchkovskii, J.S. Tse, S.N. Yurchenko et al., Graphene nanostructures as tunable storage media for molecular hydrogen. Natl. Acad. Sci. USA 102, 10439–10444 (2005). CrossRefGoogle Scholar
  14. 14.
    D.W. Boukhvalov, M.I. Katsnelson, A.I. Lichtenstein, Hydrogen on graphene: electronic structure, total energy, structural distortions and magnetism from first-principles calculations. Phys. Rev. B 77, 035427 (2008). CrossRefGoogle Scholar
  15. 15.
    D.C. Elias, R.P. Nair, T.M. Mohiuddin et al., Control of grphene’s properties by reversible hydrogenation: evidence for graphane. Science 323, 610–613 (2009). CrossRefGoogle Scholar
  16. 16.
    R. Balog, B.J. Jorgensen, L. Nilsson et al., Bandgap opening in graphene induced by patterned hydrogen adsorption. Nat. Mat. 9, 315–319 (2010). CrossRefGoogle Scholar
  17. 17.
    B.S. Pujari, S. Gusarov, M. Brett et al., Single-side-hydrogenated graphene: density functional theory predictions. Phys. Rev. B 84, 041402 (2011). CrossRefGoogle Scholar
  18. 18.
    S.S. Han, H. Jung, D.H. Jung et al., Stability of hydrogenation states of graphene and conditions for hydrogen spillover. Phys. Rev. B 85, 155408 (2012). CrossRefGoogle Scholar
  19. 19.
    W. Zhou, J. Zhou, J. Shen et al., First-principles study of high-capacity hydrogen storage on graphene with Li atoms. J. Phys. Chem. Solids 73, 245–251 (2012). CrossRefGoogle Scholar
  20. 20.
    V. Tozzini, V. Pellegrini, Prospects for hydrogen storage in graphene. Phys. Chem. Chem. Phys. 15, 80–89 (2013). CrossRefGoogle Scholar
  21. 21.
    S. Gadipelli, Z. Guo, Graphene-based materials: synthesis and gas sorption, storage and separation. Prog. Mater Sci. 69, 1–60 (2015). CrossRefGoogle Scholar
  22. 22.
    H. Hu, J. Xin, H. Hu et al., Metal-free graphene-based catalyste-insight into the catalytic activity: a short review. Appl. Catal. A. Gen. 492, 1–9 (2015). CrossRefGoogle Scholar
  23. 23.
    M.L. Guillou, N. Toulhoat, Y. Pipon et al., Deuterium migration in nuclear graphite: consequences for the behavior of tritium in CO2-cooled reactors and for the decontamination of irradiated graphite waste. J. Nucl. Mater. 461, 72–77 (2015). CrossRefGoogle Scholar
  24. 24.
    T.N. Hoai, K.H. Lam, N.T. Thanh et al., Migration and desorption of hydrogen atom and molecule on/from graphene. Carbon 121, 248–256 (2017). CrossRefGoogle Scholar
  25. 25.
    Y. Miura, H. Kasai, W. Dino et al., First principles studies for the dissociative adsorption of H2 on graphene. J. Appl. Phys. 933, 395–400 (2003). CrossRefGoogle Scholar
  26. 26.
    Z. Ao, S. Li, in Graphene Simulation, ed. by J.R. Gong (InTech, Rijeka, 2011), p. 53Google Scholar
  27. 27.
    M. Terrones, A.R. Botello-Mendez, J. Campos-Delgado et al., Graphene and graphite nanoribbons: morphology, properties, synthesis, defects and applications. Nano Today 5, 351–372 (2010). CrossRefGoogle Scholar
  28. 28.
    K.S. Novoselov, A.K. Geim, S.V. Morozov et al., Two-dimensional gas of massless dirac fermions in graphene. Nature 438, 197–200 (2005). CrossRefGoogle Scholar
  29. 29.
    K. Nordlund, J. Keinonen, T. Mattila, Formation of ion irradiation induced small-scale defects on graphite surfaces. Phys. Rev. Lett. 77, 699–702 (1996). CrossRefGoogle Scholar
  30. 30.
    A. Hashimoto, K. Suenaga, A. Gloter et al., Direct evidence for atomic defects in graphene layers. Nature 430, 870–873 (2004). CrossRefGoogle Scholar
  31. 31.
    P.O. Lehtinen, A.S. Foster, Y. Ma et al., Irradiation-induced magnetism in graphite: a density functional study. Phys. Rev. Lett. 93, 187202 (2004). CrossRefGoogle Scholar
  32. 32.
    O.V. Yazyev, L. Helm, Defect-induced magnetism in graphene. Phys. Rev. B 7, 125408 (2007). CrossRefGoogle Scholar
  33. 33.
    V.M. Pereira, D.S. Lopes, N.A. Castro, Modeling disorder in graphene. Phys. Rev. B 77, 115109 (2008). CrossRefGoogle Scholar
  34. 34.
    O.V. Yazyev, Magnetism in disordered graphene and irradiated graphite. Phys. Rev. Lett. 101, 037203 (2008). CrossRefGoogle Scholar
  35. 35.
    J.C. Meyer, C. Kisielowski, R. Erni et al., Direct imaging of lattice atoms and topological defects in graphene membranes. Nano Lett. 8, 3582–3586 (2008). CrossRefGoogle Scholar
  36. 36.
    M.M. Ugeda, I. Brihuega, F. Guinea et al., Missing atom as a source of carbon magnetism. Phys. Rev. Lett. 104, 096804 (2010). CrossRefGoogle Scholar
  37. 37.
    T. Kondo, Y. Honma, J. Oh et al., Edge states propagating from a defect of graphite: scanning tunneling spectroscopy measurements. Phys. Rev. B 82, 153414 (2010). CrossRefGoogle Scholar
  38. 38.
    B. Wen, M.S. Cao, M.M. Lu et al., Reduced graphene oxides: light-weight and high-efficiency electromagnetic interference shielding at elevated temperatures. Adv. Mater. 26, 3484–3489 (2014). CrossRefGoogle Scholar
  39. 39.
    M.S. Cao, X.X. Wang, W.Q. Cao et al., Thermally Driven Transport and Relaxation Switching Self-Powered Electromagnetic Energy Conversion. Small 14, 1800987–1800994 (2018). CrossRefGoogle Scholar
  40. 40.
    W.Q. Cao, X.X. Wang, J. Yuan et al., Temperature dependent microwave absorption of ultrathin graphene composites. J. Mater. Chem. C 3, 10017–10022 (2015). CrossRefGoogle Scholar
  41. 41.
    W.L. Song, M.S. Cao, Z.L. Hou et al., High dielectric loss and its monotonic dependence of conducting-dominated multiwalled carbon nanotubes/silica nanocomposite on temperature ranging from 373 to 873 K in X-band. Appl. Phys. Lett. 94, 233110 (2009). CrossRefGoogle Scholar
  42. 42.
    Y.N. Tang, Z.Y. Liu, Z.G. Shen et al., Adsorption sensitivity of metal atom decorated bilayer graphene toward toxic gas molecules (CO, NO, SO2 and HCN). Sensor. Actuat. B Chem. 238, 182–195 (2017). CrossRefGoogle Scholar
  43. 43.
    Y.N. Tang, H.D. Chai, W.G. Chen et al., Theoretical study on geometric, electronic and catalytic performances of Fe dopant pairs in graphene. Phys. Chem. Chem. Phys. 19, 26369–26380 (2017). CrossRefGoogle Scholar
  44. 44.
    Y.N. Tang, W.G. Chen, Z.G. Shen et al., Nitrogen coordinated silicon-doped graphene as a potential alternative metal-free catalyst for CO oxidation. Carbon 111, 448–458 (2017). CrossRefGoogle Scholar
  45. 45.
    Y.N. Tang, H.D. Chai, H.W. Zhang et al., Tuning the adsorption and interaction of CO and O-2 on graphene-like BC3-supported non-noble metal atoms. Phys. Chem. Chem. Phys. 20, 14040–14052 (2018). CrossRefGoogle Scholar
  46. 46.
    Y.N. Tang, Z.G. Shen, Y.Q. Ma et al., Divacancy-nitrogen/boron-codoped graphene as a metal-free catalyst for high-efficient CO oxidation. Mater. Chem. Phys. 207, 11–22 (2018). CrossRefGoogle Scholar
  47. 47.
    L.H. Yao, W.Q. Cao, M.S. Cao et al., Doping effect on the adsorption of Na atom onto graphenes. Curr. Appl. Phys. 16, 574–580 (2016). CrossRefGoogle Scholar
  48. 48.
    C. Marina, C. Simone, F.T. Gian et al., Structure and stability of hydrogenated carbon atom vacancies in graphene. Carbon 77, 165–174 (2014). CrossRefGoogle Scholar
  49. 49.
    K. Yamashita, M. Saito, T. Oda, Atomic geometry and stability of mono-, di-, and trivacancies in graphene. Jpn. J. Appl. Phys. 45, 6534–6536 (2006). CrossRefGoogle Scholar
  50. 50.
    A.A. El-Barbary, R.H. Telling, C.P. Ewels et al., Structure and energetics of the vacancy in graphite. Phys. Rev. B 68, 144107 (2003). CrossRefGoogle Scholar
  51. 51.
    A.V. Krasheninnikov, P.O. Lehtinen, A.S. Foster et al., Bending the rules: contrasting vacancy energetics and migration in graphite and carbon nanotubes. Chem. Phys. Lett. 418, 132–147 (2006). CrossRefGoogle Scholar
  52. 52.
    D.Q. Xia, C.L. Ren, W. Zhang et al., Theoretical study of the interaction between metallic fission products and defective graphite. Comput. Mater. Sci. 106, 129–134 (2015). CrossRefGoogle Scholar
  53. 53.
    Y. Lei, A.S. Stephen, W.G. Zhu et al., Hydrogen-induced magnetization and tunable hydrogen storage in graphitic structures. Phys. Rev. B 77, 134114 (2008). CrossRefGoogle Scholar
  54. 54.
    Q.G. Jiang, Z.M. Ao, W.T. Zheng et al., Enhanced hydrogen sensing properties of graphene by introducing a mono-atom-vacancy. Phys. Chem. Chem. Phys. 15, 21016–21022 (2013). CrossRefGoogle Scholar
  55. 55.
    G.K. Sunnardianto, I. Maruyama, K. Kusakabe, Dissociation-chemisorption pathways of H2 molecule on graphene activated by a hydrogenated mono-vacancy V11. Adv. Sci. Eng. Med. 8, 421–426 (2016). CrossRefGoogle Scholar
  56. 56.
    G.K. Sunnardianto, I. Maruyama, K. Kusakabe, Storing-hydrogen processes on graphene activated by atomic-vacancies. Int. J. Hydrogen Energy 42, 23691–23697 (2017). CrossRefGoogle Scholar
  57. 57.
    P. Hohenberg, W. Kohn, Inhomogeneous electron gas. Phys. Rev. B 136, 864 (1964). MathSciNetCrossRefGoogle Scholar
  58. 58.
    W. Kohn, L.J. Sham, Self-consistent equations including exchange and correlation effects. Phys. Rev. B 140, 1133 (1965). MathSciNetCrossRefGoogle Scholar
  59. 59.
    G. Kresse, J. Furthmuller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996). CrossRefGoogle Scholar
  60. 60.
    J.P. Perdew, J.A. Chevary, S.H. Vosko et al., Atoms, molecules, solids, and surfaces-applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 46, 6671–6687 (1992). CrossRefGoogle Scholar
  61. 61.
    P.E. Blochl, Projector Augmented-Wave Method. Phys. Rev. B 50, 17953–17979 (1994). CrossRefGoogle Scholar
  62. 62.
    G. Henkelman, B.P. Uberuaga, H. Jonsson, A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113, 9901–9904 (2000). CrossRefGoogle Scholar
  63. 63.
    G. Henkelman, H. Jonsson, Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J. Chem. Phys. 113, 9978–9985 (2000). CrossRefGoogle Scholar
  64. 64.
    C. Li, C. Fang, C. Yang, First-principle studies of radioactive fission productions Cs/Sr/Ag/I adsorption on chrome–molybdenum steel in Chinese 200 MW HTR-PM. Nucl. Sci. Technol. 28, 79–88 (2017). CrossRefGoogle Scholar
  65. 65.
    V. Morón, P. Gamallo, R. Sayós, DFT and kinetics study of O/O2 mixturesreacting over a graphite (0001) basal surface. Theor. Chem. Acc. 128, 683–694 (2011). CrossRefGoogle Scholar
  66. 66.
    J. Fayos, Possible 3D carbon structures as progressive intermediates ingraphite to diamond phase transition. J. Solid State Chem. 148, 278–285 (1999). CrossRefGoogle Scholar
  67. 67.
    X.W. Sha, B. Jackson, First-principles study of the structural and energetic properties of H atoms on a graphite (0001) surface. Surf. Sci. 496, 318–330 (2002). CrossRefGoogle Scholar
  68. 68.
    D.W. Boukhvalov, M.I. Katsnelson, A.I. Lichtenstein, Hydrogen on graphene: electronic structure, total energy, structural distortions and magnetism from first-principles calculations. Phys. Rev. B 77, 035427 (2008). CrossRefGoogle Scholar
  69. 69.
    Y. Miura, H. Kasai, W. Dino et al., First principles studies for the disociative adsorption of H2 on graphene. J. Appl. Phys. 93, 3395–3400 (2003). CrossRefGoogle Scholar
  70. 70.
    P.O. Lethinen, A.S. Foster, Y. Ma et al., Irradiation induced magnetism in graphene: a density functional study. Phys. Rev. Lett. 93, 187202 (2004). CrossRefGoogle Scholar
  71. 71.
    O.V. Yazyev, L. Helm, Defect induced magnetism in graphene. Phys. Rev. B 75, 125408 (2007). CrossRefGoogle Scholar
  72. 72.
    M.W.C. Dharma-Wardana, M.Z. Zgierski, Magnetism and structure at vacant lattice sites in graphene. Phys. E 41, 80–83 (2008). CrossRefGoogle Scholar
  73. 73.
    X.Q. Dai, J.H. Zhao, M.H. Xie et al., First-principle study on magnetism induced by Vacanies in graphene. Eur. Phys. J. B 80, 343–351 (2011). CrossRefGoogle Scholar
  74. 74.
    F. Banhart, J. Kotakoski, A.V. Krasheninnikov, Structural Defects in Graphene. ACS Nano 5, 26–41 (2011). CrossRefGoogle Scholar

Copyright information

© China Science Publishing & Media Ltd. (Science Press), Shanghai Institute of Applied Physics, the Chinese Academy of Sciences, Chinese Nuclear Society and Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Xi-Jun Wu
    • 1
    • 2
  • Ze-Jie Fei
    • 2
  • Wen-Guan Liu
    • 2
    Email author
  • Jie Tan
    • 3
  • Guang-Hua Wang
    • 2
  • Dong-Qin Xia
    • 4
  • Ke Deng
    • 2
  • Xue-Kun Chen
    • 1
  • De-Tao Xiao
    • 1
  • Sheng-Wei Wu
    • 2
    Email author
  • Wei Liu
    • 2
  1. 1.School of Mathematics and PhysicsUniversity of South ChinaHengyangChina
  2. 2.Shanghai Institute of Applied PhysicsChinese Academy of SciencesShanghaiChina
  3. 3.Sino-French Institute of Nuclear Engineering and TechnologySun Yat-Sen UniversityZhuhaiChina
  4. 4.Key Laboratory of Neutronics and Radiation Safety, Institute of Nuclear Energy Safety TechnologyChinese Academy of SciencesHefeiChina

Personalised recommendations