Advertisement

Adsorption and desorption of hydrogen on/from single-vacancy and double-vacancy graphenes

  • Xi-Jun Wu
  • Ze-Jie Fei
  • Wen-Guan LiuEmail author
  • Jie Tan
  • Guang-Hua Wang
  • Dong-Qin Xia
  • Ke Deng
  • Xue-Kun Chen
  • De-Tao Xiao
  • Sheng-Wei WuEmail author
  • Wei Liu
Article
  • 41 Downloads

Abstract

Adsorption and desorption of hydrogen on/from single-vacancy and double-vacancy graphenes were studied by means of first-principles calculations. The structure and stability of continuous hydrogenation in single vacancy were investigated. Several new stable structures were found, along with their corresponding energy barriers. In double-vacancy graphene, the preferred sites of H atoms were identified, and H2 molecule desorption and adsorption of from/on were calculated from the energy barriers. This work provides a systematic and comprehensive understanding of hydrogen behavior on defected graphene.

Keywords

Hydrogen Graphene Single vacancy Double vacancy Adsorption Desorption First-principles calculation 

References

  1. 1.
    I. Staffell, The energy and fuel data sheet. 2011. http://tinyurl.com/energydata
  2. 2.
    P.D. Jongh, M. Allendorf, J.J. Vajo et al., Nanoconfined light metal hydrides for reversible hydrogen storage. MRS Bull. 38, 488–494 (2013).  https://doi.org/10.1557/mrs.2013.108 CrossRefGoogle Scholar
  3. 3.
    L. Pickering, J. Li, D. Reed et al., Ti–V–Mn based metal hydrides for hydrogen storage. J. Alloys Compd. 580, 233–237 (2013).  https://doi.org/10.1016/j.jallcom.2013.03.208 CrossRefGoogle Scholar
  4. 4.
    A.M. Jorge, E. Prokofiev, G.L. de Lima et al., An investigation of hydrogen storage in a magnesium-based alloy processed by equal-channel angular pressing. Int. J. Hydrogen Energy 38, 8306–8312 (2013).  https://doi.org/10.1016/j.ijhydene.2013.03.158 CrossRefGoogle Scholar
  5. 5.
    D.L. Chao, C.L. Zhong, Z.W. Ma et al., Improvement in high-temperature performance of Co-free high-Fe AB 5-type hydrogen storage alloys. Int. J. Hydrogen Energy 37, 12375–12383 (2012).  https://doi.org/10.1016/j.ijhydene.2012.05.147 CrossRefGoogle Scholar
  6. 6.
    C.N. Peng, The effects of hydrogen on the helium behavior in palladium. Nucl. Sci. Tech. 27, 106 (2016).  https://doi.org/10.1007/s41365-016-0115-5 CrossRefGoogle Scholar
  7. 7.
    W.G. Liu, Y. Qian, D.X. Zhang et al., Theoretical study of the interaction between hydrogen and 4d alloying atom in nickel. Nucl. Sci. Tech. 28, 82 (2017).  https://doi.org/10.1007/s41365-017-0235-6 CrossRefGoogle Scholar
  8. 8.
    P. Reunchan, S.H. Jhi, Metal-dispersed porous graphene for hydrogen storage. Appl. Phys. Lett. 98, 93–103 (2011).  https://doi.org/10.1063/1.3560468 CrossRefGoogle Scholar
  9. 9.
    Y. Xia, Z. Yang, Y. Zhu, Porous carbon-based materials for hydrogen storage: advancement and challenges. J. Mater. Chem. A 1, 9365–9381 (2013).  https://doi.org/10.1039/c3ta10583k CrossRefGoogle Scholar
  10. 10.
    X.K. Chen, J. Liu, Z.H. Peng et al., A wave-dominated heat transport mechanism for negative differential thermal resistance in graphene/hexagonal boron nitride heterostructures. Appl. Phys. Lett. 110, 091907 (2017).  https://doi.org/10.1063/1.4977776 CrossRefGoogle Scholar
  11. 11.
    X.K. Chen, Z.X. Xie, W.X. Zhou et al., Thermal rectification and negative differential thermal resistance behaviors in graphene/hexagonal boron nitride heterojunction. Carbon 100, 492–500 (2016).  https://doi.org/10.1016/j.carbon.2016.01.045 CrossRefGoogle Scholar
  12. 12.
    M. Pumera, Graphene-based nanomaterials for energy storage. Energy Environ. Sci. 4, 668–674 (2011).  https://doi.org/10.1039/c0ee00295j CrossRefGoogle Scholar
  13. 13.
    S. Patchkovskii, J.S. Tse, S.N. Yurchenko et al., Graphene nanostructures as tunable storage media for molecular hydrogen. Natl. Acad. Sci. USA 102, 10439–10444 (2005).  https://doi.org/10.1073/pnas.0501030102 CrossRefGoogle Scholar
  14. 14.
    D.W. Boukhvalov, M.I. Katsnelson, A.I. Lichtenstein, Hydrogen on graphene: electronic structure, total energy, structural distortions and magnetism from first-principles calculations. Phys. Rev. B 77, 035427 (2008).  https://doi.org/10.1103/PhysRevB.77.035427 CrossRefGoogle Scholar
  15. 15.
    D.C. Elias, R.P. Nair, T.M. Mohiuddin et al., Control of grphene’s properties by reversible hydrogenation: evidence for graphane. Science 323, 610–613 (2009).  https://doi.org/10.1126/science.1167130 CrossRefGoogle Scholar
  16. 16.
    R. Balog, B.J. Jorgensen, L. Nilsson et al., Bandgap opening in graphene induced by patterned hydrogen adsorption. Nat. Mat. 9, 315–319 (2010).  https://doi.org/10.1038/NMAT2710 CrossRefGoogle Scholar
  17. 17.
    B.S. Pujari, S. Gusarov, M. Brett et al., Single-side-hydrogenated graphene: density functional theory predictions. Phys. Rev. B 84, 041402 (2011).  https://doi.org/10.1103/PhysRevB.84.041402 CrossRefGoogle Scholar
  18. 18.
    S.S. Han, H. Jung, D.H. Jung et al., Stability of hydrogenation states of graphene and conditions for hydrogen spillover. Phys. Rev. B 85, 155408 (2012).  https://doi.org/10.1103/PhysRevB.85.155408 CrossRefGoogle Scholar
  19. 19.
    W. Zhou, J. Zhou, J. Shen et al., First-principles study of high-capacity hydrogen storage on graphene with Li atoms. J. Phys. Chem. Solids 73, 245–251 (2012).  https://doi.org/10.1016/j.jpcs.2011.10.035 CrossRefGoogle Scholar
  20. 20.
    V. Tozzini, V. Pellegrini, Prospects for hydrogen storage in graphene. Phys. Chem. Chem. Phys. 15, 80–89 (2013).  https://doi.org/10.1039/c2cp42538f CrossRefGoogle Scholar
  21. 21.
    S. Gadipelli, Z. Guo, Graphene-based materials: synthesis and gas sorption, storage and separation. Prog. Mater Sci. 69, 1–60 (2015).  https://doi.org/10.1016/j.pmatsci.2014.10.004 CrossRefGoogle Scholar
  22. 22.
    H. Hu, J. Xin, H. Hu et al., Metal-free graphene-based catalyste-insight into the catalytic activity: a short review. Appl. Catal. A. Gen. 492, 1–9 (2015).  https://doi.org/10.1016/j.apcata.2014.11.041 CrossRefGoogle Scholar
  23. 23.
    M.L. Guillou, N. Toulhoat, Y. Pipon et al., Deuterium migration in nuclear graphite: consequences for the behavior of tritium in CO2-cooled reactors and for the decontamination of irradiated graphite waste. J. Nucl. Mater. 461, 72–77 (2015).  https://doi.org/10.1016/j.jnucmat.2015.03.005 CrossRefGoogle Scholar
  24. 24.
    T.N. Hoai, K.H. Lam, N.T. Thanh et al., Migration and desorption of hydrogen atom and molecule on/from graphene. Carbon 121, 248–256 (2017).  https://doi.org/10.1016/j.carbon.2017.05.069 CrossRefGoogle Scholar
  25. 25.
    Y. Miura, H. Kasai, W. Dino et al., First principles studies for the dissociative adsorption of H2 on graphene. J. Appl. Phys. 933, 395–400 (2003).  https://doi.org/10.1063/1.1555701 CrossRefGoogle Scholar
  26. 26.
    Z. Ao, S. Li, in Graphene Simulation, ed. by J.R. Gong (InTech, Rijeka, 2011), p. 53Google Scholar
  27. 27.
    M. Terrones, A.R. Botello-Mendez, J. Campos-Delgado et al., Graphene and graphite nanoribbons: morphology, properties, synthesis, defects and applications. Nano Today 5, 351–372 (2010).  https://doi.org/10.1016/j.nantod.2010.06.010 CrossRefGoogle Scholar
  28. 28.
    K.S. Novoselov, A.K. Geim, S.V. Morozov et al., Two-dimensional gas of massless dirac fermions in graphene. Nature 438, 197–200 (2005).  https://doi.org/10.1038/nature04233 CrossRefGoogle Scholar
  29. 29.
    K. Nordlund, J. Keinonen, T. Mattila, Formation of ion irradiation induced small-scale defects on graphite surfaces. Phys. Rev. Lett. 77, 699–702 (1996).  https://doi.org/10.1103/PhysRevLett.77.699 CrossRefGoogle Scholar
  30. 30.
    A. Hashimoto, K. Suenaga, A. Gloter et al., Direct evidence for atomic defects in graphene layers. Nature 430, 870–873 (2004).  https://doi.org/10.1038/nature02817 CrossRefGoogle Scholar
  31. 31.
    P.O. Lehtinen, A.S. Foster, Y. Ma et al., Irradiation-induced magnetism in graphite: a density functional study. Phys. Rev. Lett. 93, 187202 (2004).  https://doi.org/10.1103/PhysRevLett.93.187202 CrossRefGoogle Scholar
  32. 32.
    O.V. Yazyev, L. Helm, Defect-induced magnetism in graphene. Phys. Rev. B 7, 125408 (2007).  https://doi.org/10.1103/PhysRevB.75.125408 CrossRefGoogle Scholar
  33. 33.
    V.M. Pereira, D.S. Lopes, N.A. Castro, Modeling disorder in graphene. Phys. Rev. B 77, 115109 (2008).  https://doi.org/10.1103/PhysRevB.77.115109 CrossRefGoogle Scholar
  34. 34.
    O.V. Yazyev, Magnetism in disordered graphene and irradiated graphite. Phys. Rev. Lett. 101, 037203 (2008).  https://doi.org/10.1103/PhysRevLett.101.037203 CrossRefGoogle Scholar
  35. 35.
    J.C. Meyer, C. Kisielowski, R. Erni et al., Direct imaging of lattice atoms and topological defects in graphene membranes. Nano Lett. 8, 3582–3586 (2008).  https://doi.org/10.1021/nl801386m CrossRefGoogle Scholar
  36. 36.
    M.M. Ugeda, I. Brihuega, F. Guinea et al., Missing atom as a source of carbon magnetism. Phys. Rev. Lett. 104, 096804 (2010).  https://doi.org/10.1103/PhysRevLett.104.096804 CrossRefGoogle Scholar
  37. 37.
    T. Kondo, Y. Honma, J. Oh et al., Edge states propagating from a defect of graphite: scanning tunneling spectroscopy measurements. Phys. Rev. B 82, 153414 (2010).  https://doi.org/10.1103/PhysRevB.82.153414 CrossRefGoogle Scholar
  38. 38.
    B. Wen, M.S. Cao, M.M. Lu et al., Reduced graphene oxides: light-weight and high-efficiency electromagnetic interference shielding at elevated temperatures. Adv. Mater. 26, 3484–3489 (2014).  https://doi.org/10.1002/adma.201400108 CrossRefGoogle Scholar
  39. 39.
    M.S. Cao, X.X. Wang, W.Q. Cao et al., Thermally Driven Transport and Relaxation Switching Self-Powered Electromagnetic Energy Conversion. Small 14, 1800987–1800994 (2018).  https://doi.org/10.1002/smll.201800987 CrossRefGoogle Scholar
  40. 40.
    W.Q. Cao, X.X. Wang, J. Yuan et al., Temperature dependent microwave absorption of ultrathin graphene composites. J. Mater. Chem. C 3, 10017–10022 (2015).  https://doi.org/10.1039/c5tc02185e CrossRefGoogle Scholar
  41. 41.
    W.L. Song, M.S. Cao, Z.L. Hou et al., High dielectric loss and its monotonic dependence of conducting-dominated multiwalled carbon nanotubes/silica nanocomposite on temperature ranging from 373 to 873 K in X-band. Appl. Phys. Lett. 94, 233110 (2009).  https://doi.org/10.1063/1.3152764 CrossRefGoogle Scholar
  42. 42.
    Y.N. Tang, Z.Y. Liu, Z.G. Shen et al., Adsorption sensitivity of metal atom decorated bilayer graphene toward toxic gas molecules (CO, NO, SO2 and HCN). Sensor. Actuat. B Chem. 238, 182–195 (2017).  https://doi.org/10.1016/j.snb.2016.07.039 CrossRefGoogle Scholar
  43. 43.
    Y.N. Tang, H.D. Chai, W.G. Chen et al., Theoretical study on geometric, electronic and catalytic performances of Fe dopant pairs in graphene. Phys. Chem. Chem. Phys. 19, 26369–26380 (2017).  https://doi.org/10.1039/c7cp05683d CrossRefGoogle Scholar
  44. 44.
    Y.N. Tang, W.G. Chen, Z.G. Shen et al., Nitrogen coordinated silicon-doped graphene as a potential alternative metal-free catalyst for CO oxidation. Carbon 111, 448–458 (2017).  https://doi.org/10.1016/j.carbon.2016.10.028 CrossRefGoogle Scholar
  45. 45.
    Y.N. Tang, H.D. Chai, H.W. Zhang et al., Tuning the adsorption and interaction of CO and O-2 on graphene-like BC3-supported non-noble metal atoms. Phys. Chem. Chem. Phys. 20, 14040–14052 (2018).  https://doi.org/10.1039/c8cp00772a CrossRefGoogle Scholar
  46. 46.
    Y.N. Tang, Z.G. Shen, Y.Q. Ma et al., Divacancy-nitrogen/boron-codoped graphene as a metal-free catalyst for high-efficient CO oxidation. Mater. Chem. Phys. 207, 11–22 (2018).  https://doi.org/10.1016/j.matchemphys.2017.12.048 CrossRefGoogle Scholar
  47. 47.
    L.H. Yao, W.Q. Cao, M.S. Cao et al., Doping effect on the adsorption of Na atom onto graphenes. Curr. Appl. Phys. 16, 574–580 (2016).  https://doi.org/10.1016/j.cap.2016.03.001 CrossRefGoogle Scholar
  48. 48.
    C. Marina, C. Simone, F.T. Gian et al., Structure and stability of hydrogenated carbon atom vacancies in graphene. Carbon 77, 165–174 (2014).  https://doi.org/10.1016/j.carbon.2014.05.018 CrossRefGoogle Scholar
  49. 49.
    K. Yamashita, M. Saito, T. Oda, Atomic geometry and stability of mono-, di-, and trivacancies in graphene. Jpn. J. Appl. Phys. 45, 6534–6536 (2006).  https://doi.org/10.1143/JJAP.45.6534 CrossRefGoogle Scholar
  50. 50.
    A.A. El-Barbary, R.H. Telling, C.P. Ewels et al., Structure and energetics of the vacancy in graphite. Phys. Rev. B 68, 144107 (2003).  https://doi.org/10.1103/PhysRevB.68.144107 CrossRefGoogle Scholar
  51. 51.
    A.V. Krasheninnikov, P.O. Lehtinen, A.S. Foster et al., Bending the rules: contrasting vacancy energetics and migration in graphite and carbon nanotubes. Chem. Phys. Lett. 418, 132–147 (2006).  https://doi.org/10.1016/j.cplett.2005.10.106 CrossRefGoogle Scholar
  52. 52.
    D.Q. Xia, C.L. Ren, W. Zhang et al., Theoretical study of the interaction between metallic fission products and defective graphite. Comput. Mater. Sci. 106, 129–134 (2015).  https://doi.org/10.1016/j.commatsci.2015.04.029 CrossRefGoogle Scholar
  53. 53.
    Y. Lei, A.S. Stephen, W.G. Zhu et al., Hydrogen-induced magnetization and tunable hydrogen storage in graphitic structures. Phys. Rev. B 77, 134114 (2008).  https://doi.org/10.1103/PhysRevB.77.134114 CrossRefGoogle Scholar
  54. 54.
    Q.G. Jiang, Z.M. Ao, W.T. Zheng et al., Enhanced hydrogen sensing properties of graphene by introducing a mono-atom-vacancy. Phys. Chem. Chem. Phys. 15, 21016–21022 (2013).  https://doi.org/10.1039/c3cp52976b CrossRefGoogle Scholar
  55. 55.
    G.K. Sunnardianto, I. Maruyama, K. Kusakabe, Dissociation-chemisorption pathways of H2 molecule on graphene activated by a hydrogenated mono-vacancy V11. Adv. Sci. Eng. Med. 8, 421–426 (2016).  https://doi.org/10.1166/asem.2016.1875 CrossRefGoogle Scholar
  56. 56.
    G.K. Sunnardianto, I. Maruyama, K. Kusakabe, Storing-hydrogen processes on graphene activated by atomic-vacancies. Int. J. Hydrogen Energy 42, 23691–23697 (2017).  https://doi.org/10.1016/j.ijhydene.2017.01.115 CrossRefGoogle Scholar
  57. 57.
    P. Hohenberg, W. Kohn, Inhomogeneous electron gas. Phys. Rev. B 136, 864 (1964).  https://doi.org/10.1103/PhysRev.136.B864 MathSciNetCrossRefGoogle Scholar
  58. 58.
    W. Kohn, L.J. Sham, Self-consistent equations including exchange and correlation effects. Phys. Rev. B 140, 1133 (1965).  https://doi.org/10.1103/PhysRev.140.A1133 MathSciNetCrossRefGoogle Scholar
  59. 59.
    G. Kresse, J. Furthmuller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).  https://doi.org/10.1103/PhysRevB.54.11169 CrossRefGoogle Scholar
  60. 60.
    J.P. Perdew, J.A. Chevary, S.H. Vosko et al., Atoms, molecules, solids, and surfaces-applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 46, 6671–6687 (1992).  https://doi.org/10.1103/PhysRevB.46.6671 CrossRefGoogle Scholar
  61. 61.
    P.E. Blochl, Projector Augmented-Wave Method. Phys. Rev. B 50, 17953–17979 (1994).  https://doi.org/10.1103/PhysRevB.50.17953 CrossRefGoogle Scholar
  62. 62.
    G. Henkelman, B.P. Uberuaga, H. Jonsson, A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113, 9901–9904 (2000).  https://doi.org/10.1063/1.1329672 CrossRefGoogle Scholar
  63. 63.
    G. Henkelman, H. Jonsson, Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J. Chem. Phys. 113, 9978–9985 (2000).  https://doi.org/10.1063/1.1323224 CrossRefGoogle Scholar
  64. 64.
    C. Li, C. Fang, C. Yang, First-principle studies of radioactive fission productions Cs/Sr/Ag/I adsorption on chrome–molybdenum steel in Chinese 200 MW HTR-PM. Nucl. Sci. Technol. 28, 79–88 (2017).  https://doi.org/10.1007/s41365-017-0241-8 CrossRefGoogle Scholar
  65. 65.
    V. Morón, P. Gamallo, R. Sayós, DFT and kinetics study of O/O2 mixturesreacting over a graphite (0001) basal surface. Theor. Chem. Acc. 128, 683–694 (2011).  https://doi.org/10.1007/s00214-010-0798-3 CrossRefGoogle Scholar
  66. 66.
    J. Fayos, Possible 3D carbon structures as progressive intermediates ingraphite to diamond phase transition. J. Solid State Chem. 148, 278–285 (1999).  https://doi.org/10.1006/jssc.1999.8448 CrossRefGoogle Scholar
  67. 67.
    X.W. Sha, B. Jackson, First-principles study of the structural and energetic properties of H atoms on a graphite (0001) surface. Surf. Sci. 496, 318–330 (2002).  https://doi.org/10.1016/S0039-6028(01)01602-8 CrossRefGoogle Scholar
  68. 68.
    D.W. Boukhvalov, M.I. Katsnelson, A.I. Lichtenstein, Hydrogen on graphene: electronic structure, total energy, structural distortions and magnetism from first-principles calculations. Phys. Rev. B 77, 035427 (2008).  https://doi.org/10.1103/PhysRevB.77.035427 CrossRefGoogle Scholar
  69. 69.
    Y. Miura, H. Kasai, W. Dino et al., First principles studies for the disociative adsorption of H2 on graphene. J. Appl. Phys. 93, 3395–3400 (2003).  https://doi.org/10.1063/1.1555701 CrossRefGoogle Scholar
  70. 70.
    P.O. Lethinen, A.S. Foster, Y. Ma et al., Irradiation induced magnetism in graphene: a density functional study. Phys. Rev. Lett. 93, 187202 (2004).  https://doi.org/10.1103/PhysRevLett.93.187202 CrossRefGoogle Scholar
  71. 71.
    O.V. Yazyev, L. Helm, Defect induced magnetism in graphene. Phys. Rev. B 75, 125408 (2007).  https://doi.org/10.1103/PhysRevB.75.125408 CrossRefGoogle Scholar
  72. 72.
    M.W.C. Dharma-Wardana, M.Z. Zgierski, Magnetism and structure at vacant lattice sites in graphene. Phys. E 41, 80–83 (2008).  https://doi.org/10.1016/j.physe.2008.06.007 CrossRefGoogle Scholar
  73. 73.
    X.Q. Dai, J.H. Zhao, M.H. Xie et al., First-principle study on magnetism induced by Vacanies in graphene. Eur. Phys. J. B 80, 343–351 (2011).  https://doi.org/10.1140/epjb/e2011-10955-x CrossRefGoogle Scholar
  74. 74.
    F. Banhart, J. Kotakoski, A.V. Krasheninnikov, Structural Defects in Graphene. ACS Nano 5, 26–41 (2011).  https://doi.org/10.1021/nn102598m CrossRefGoogle Scholar

Copyright information

© China Science Publishing & Media Ltd. (Science Press), Shanghai Institute of Applied Physics, the Chinese Academy of Sciences, Chinese Nuclear Society and Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Xi-Jun Wu
    • 1
    • 2
  • Ze-Jie Fei
    • 2
  • Wen-Guan Liu
    • 2
    Email author
  • Jie Tan
    • 3
  • Guang-Hua Wang
    • 2
  • Dong-Qin Xia
    • 4
  • Ke Deng
    • 2
  • Xue-Kun Chen
    • 1
  • De-Tao Xiao
    • 1
  • Sheng-Wei Wu
    • 2
    Email author
  • Wei Liu
    • 2
  1. 1.School of Mathematics and PhysicsUniversity of South ChinaHengyangChina
  2. 2.Shanghai Institute of Applied PhysicsChinese Academy of SciencesShanghaiChina
  3. 3.Sino-French Institute of Nuclear Engineering and TechnologySun Yat-Sen UniversityZhuhaiChina
  4. 4.Key Laboratory of Neutronics and Radiation Safety, Institute of Nuclear Energy Safety TechnologyChinese Academy of SciencesHefeiChina

Personalised recommendations