Advertisement

Safety study on HIC containing waste resin with respect to hydrogen release

  • Shuai-Wei Zhao
  • Mei-Lan Jia
  • Xing-Qian Jiao
  • Meng-Qi Qiu
  • Hong-Hui LiEmail author
  • Yu-Chen Liu
  • Liang Mao
  • Wei Liu
  • Dong Liang
Article
  • 10 Downloads

Abstract

To explore the behavior of radiolytically produced hydrogen release from the waste resin stored in a high integrated container (HIC), and the mechanism of hydrogen diffusion in a near-surface disposal facility, both experimental studies and numerical simulations were performed through an accelerated irradiation test and simulated disposal, respectively. Results indicated that, 100 years after disposal, the highest hydrogen concentration appeared in the cell where the HICs were placed. The volume fraction for different scenarios postulated in the numerical simulation was 2.64% for Scenario 1, 2.28% for Scenario 2, and 3.965% for Scenario 3, all of which are lower than the hydrogen explosion limit of 4.1%. The results indicated that the simulated HIC disposal scheme is safe.

Keywords

Radioactive waste resin High integrated container Repository Radiolysis Hydrogen release 

References

  1. 1.
    K.J. Swyler, C.J. Dodge, R. Dayal, Irradiation effects on the storage and disposal of radwaste containing organic ion-exchange media. Report NUREG/CR-3383: United States Nuclear Regulatory Commission (1983).  https://doi.org/10.2172/5088342
  2. 2.
    O. Debré, B. Nsouli, J.P. Thomas et al., Irradiation-induced modifications of polymers found in nuclear waste embedding processes Part II: the ion-exchange resin. Nucl. Instrum. Methods B 131, 321–328 (1997).  https://doi.org/10.1016/s0168-583x(97)00337-6 CrossRefGoogle Scholar
  3. 3.
    A. Traboulsi, N. Dupuy, C. Rebufa et al., Investigation of gamma radiation effect on the anion exchange resin Amberlite IRA-400 in hydroxide form by FTIR and 13C NMR spectroscopy. Anal. Chim. Acta 717, 110–121 (2012).  https://doi.org/10.1016/j.aca.2011.12.046 CrossRefGoogle Scholar
  4. 4.
    M.T. Ahmed, P.G. Clay, G.R. Hall, Radiation-induced decomposition of ion exchange resins: part II. The mechanism of the deamination of anion-exchange resins. J. Chem. Soc. B (1966).  https://doi.org/10.1039/j29660001155 CrossRefGoogle Scholar
  5. 5.
    G.R. Hall, M. Streat, Radiation-induced decomposition of ion exchange resins: part I. Anion-exchange resins. J. Chem. Soc. 37, 5205–5211 (1963).  https://doi.org/10.1039/jr9630005205 CrossRefGoogle Scholar
  6. 6.
    L.L. Smith, H.J. Groh, The effect of Gamma radiation on ion exchange resins. Report DP-549: Department of Energy and Environment (1961).  https://doi.org/10.2172/4050930
  7. 7.
    A. Traboulsi, V. Labed, V. Dauvois et al., Gamma radiation effect on gas production in anion exchange resins. Nucl. Instrum. Methods B 312, 7–14 (2013).  https://doi.org/10.1016/j.nimb.2013.06.021 CrossRefGoogle Scholar
  8. 8.
    A. Baidak, J.A. Laverne, Radiation-induced decomposition of anion exchange resins. J. Nucl. Mater. 407, 211–219 (2010).  https://doi.org/10.1016/j.jnucmat.2010.10.025 CrossRefGoogle Scholar
  9. 9.
    L. Zhao, G. Yu, X.Y. Zhang et al., Diffusivity of hydrogen in steels at low temperatures. Corros. Sci. Prot. Technol. 17, 349–351 (2005).  https://doi.org/10.3969/j.issn.1002-6495.2005.05.015. (in Chinese) CrossRefGoogle Scholar
  10. 10.
    X.L. Zhen, W.B. Kan, H.L. Pan, Study on hydrogen diffusion in 304 stainless steel. Corros. Prot. Petrochem. Ind. 27, 15–16 (2010).  https://doi.org/10.3969/j.issn.1007-015X.2010.04.005. (in Chinese) CrossRefGoogle Scholar
  11. 11.
    T. Sullivan, Waste container and waste package performance modeling to support safety assessment of low and intermediate-level radioactive waste disposal. Technical Report BNL-74700-2005-IR: DOE/IAEA (US) (2004).  https://doi.org/10.2172/15016583
  12. 12.
    H.Y. Jin, Estimating diffusion coefficients of gases by use of computer simulation. Comput. Appl. Chem. 29, 1294–1298 (2012).  https://doi.org/10.3969/j.issn.1001-4160.2012.11.004 CrossRefGoogle Scholar
  13. 13.
    C. Boher, F. Frizon, S. Lorente et al., Influence of the pore network on hydrogen diffusion through blended cement pastes. Cem. Concr. Compos. 37, 30–36 (2013).  https://doi.org/10.1016/j.cemconcomp.2012.12.009 CrossRefGoogle Scholar
  14. 14.
    H.T. Vu, F. Frizon, S. Lorente, Architecture for gas transport through cementitious materials. J. Phys. D Appl. Phys. 42, 105501 (2009).  https://doi.org/10.1088/0022-3727/42/10/105501 CrossRefGoogle Scholar
  15. 15.
    J. Sercombe, R. Vidal, C. Gallé et al., Experimental study of gas diffusion in cement paste. Cem. Concr. Res. 37, 579–588 (2007).  https://doi.org/10.1016/j.cemconres.2006.12.003 CrossRefGoogle Scholar
  16. 16.
    D.T. Niu, L.T. Chen, C.H. Zhang, Calculating model for gas diffusivity in concrete. J. Xi’an Univ. Archit. Technol. 39(6), 741–745 (2007).  https://doi.org/10.3969/j.issn.1006-7930.2007.06.001. (in Chinese) CrossRefGoogle Scholar
  17. 17.
    Y.J. Tang, X.B. Zuo, G.J. Yin, Gas diffusion model in concrete based on pore structural parameters. J. Build. Mater. 18, 976–981 (2015).  https://doi.org/10.3969/j.issn.1007-9629.2015.06.011. (in Chinese) CrossRefGoogle Scholar
  18. 18.
    F. Bardelli, C. Mondelli, M. Didier et al., Hydrogen uptake and diffusion in Callovo-Oxfordian clay rock for nuclear waste disposal technology. Appl. Geochem. 49, 168–177 (2014).  https://doi.org/10.1016/j.apgeochem.2014.06.019 CrossRefGoogle Scholar
  19. 19.
    C. Mondelli, F. Bardelli, J.G. Vitillo et al., Hydrogen adsorption and diffusion in synthetic Na- montmorillonites at high pressures and temperature. Int. J. Hydrogen Energy 40(6), 2698–2709 (2015).  https://doi.org/10.1016/j.ijhydene.2014.12.038 CrossRefGoogle Scholar
  20. 20.
    E. Jacops, K. Wouters, G. Volckaert et al., Measuring the effective diffusion coefficient of dissolved hydrogen in saturated Boom Clay. Appl. Geochem. 61, 175–184 (2015).  https://doi.org/10.1016/j.apgeochem.2015.05.022 CrossRefGoogle Scholar

Copyright information

© China Science Publishing & Media Ltd. (Science Press), Shanghai Institute of Applied Physics, the Chinese Academy of Sciences, Chinese Nuclear Society and Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Shuai-Wei Zhao
    • 1
  • Mei-Lan Jia
    • 1
  • Xing-Qian Jiao
    • 2
  • Meng-Qi Qiu
    • 2
  • Hong-Hui Li
    • 1
    Email author
  • Yu-Chen Liu
    • 1
  • Liang Mao
    • 1
  • Wei Liu
    • 1
  • Dong Liang
    • 1
  1. 1.China Institute for Radiation ProtectionTaiyuanChina
  2. 2.Sichuan Environmental Protection and Engineering CO., LTD.CNNCGuangyuanChina

Personalised recommendations