Skip to main content
Log in

Safety study on HIC containing waste resin with respect to hydrogen release

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

To explore the behavior of radiolytically produced hydrogen release from the waste resin stored in a high integrated container (HIC), and the mechanism of hydrogen diffusion in a near-surface disposal facility, both experimental studies and numerical simulations were performed through an accelerated irradiation test and simulated disposal, respectively. Results indicated that, 100 years after disposal, the highest hydrogen concentration appeared in the cell where the HICs were placed. The volume fraction for different scenarios postulated in the numerical simulation was 2.64% for Scenario 1, 2.28% for Scenario 2, and 3.965% for Scenario 3, all of which are lower than the hydrogen explosion limit of 4.1%. The results indicated that the simulated HIC disposal scheme is safe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. K.J. Swyler, C.J. Dodge, R. Dayal, Irradiation effects on the storage and disposal of radwaste containing organic ion-exchange media. Report NUREG/CR-3383: United States Nuclear Regulatory Commission (1983). https://doi.org/10.2172/5088342

  2. O. Debré, B. Nsouli, J.P. Thomas et al., Irradiation-induced modifications of polymers found in nuclear waste embedding processes Part II: the ion-exchange resin. Nucl. Instrum. Methods B 131, 321–328 (1997). https://doi.org/10.1016/s0168-583x(97)00337-6

    Article  Google Scholar 

  3. A. Traboulsi, N. Dupuy, C. Rebufa et al., Investigation of gamma radiation effect on the anion exchange resin Amberlite IRA-400 in hydroxide form by FTIR and 13C NMR spectroscopy. Anal. Chim. Acta 717, 110–121 (2012). https://doi.org/10.1016/j.aca.2011.12.046

    Article  Google Scholar 

  4. M.T. Ahmed, P.G. Clay, G.R. Hall, Radiation-induced decomposition of ion exchange resins: part II. The mechanism of the deamination of anion-exchange resins. J. Chem. Soc. B (1966). https://doi.org/10.1039/j29660001155

    Article  Google Scholar 

  5. G.R. Hall, M. Streat, Radiation-induced decomposition of ion exchange resins: part I. Anion-exchange resins. J. Chem. Soc. 37, 5205–5211 (1963). https://doi.org/10.1039/jr9630005205

    Article  Google Scholar 

  6. L.L. Smith, H.J. Groh, The effect of Gamma radiation on ion exchange resins. Report DP-549: Department of Energy and Environment (1961). https://doi.org/10.2172/4050930

  7. A. Traboulsi, V. Labed, V. Dauvois et al., Gamma radiation effect on gas production in anion exchange resins. Nucl. Instrum. Methods B 312, 7–14 (2013). https://doi.org/10.1016/j.nimb.2013.06.021

    Article  Google Scholar 

  8. A. Baidak, J.A. Laverne, Radiation-induced decomposition of anion exchange resins. J. Nucl. Mater. 407, 211–219 (2010). https://doi.org/10.1016/j.jnucmat.2010.10.025

    Article  Google Scholar 

  9. L. Zhao, G. Yu, X.Y. Zhang et al., Diffusivity of hydrogen in steels at low temperatures. Corros. Sci. Prot. Technol. 17, 349–351 (2005). https://doi.org/10.3969/j.issn.1002-6495.2005.05.015. (in Chinese)

    Article  Google Scholar 

  10. X.L. Zhen, W.B. Kan, H.L. Pan, Study on hydrogen diffusion in 304 stainless steel. Corros. Prot. Petrochem. Ind. 27, 15–16 (2010). https://doi.org/10.3969/j.issn.1007-015X.2010.04.005. (in Chinese)

    Article  Google Scholar 

  11. T. Sullivan, Waste container and waste package performance modeling to support safety assessment of low and intermediate-level radioactive waste disposal. Technical Report BNL-74700-2005-IR: DOE/IAEA (US) (2004). https://doi.org/10.2172/15016583

  12. H.Y. Jin, Estimating diffusion coefficients of gases by use of computer simulation. Comput. Appl. Chem. 29, 1294–1298 (2012). https://doi.org/10.3969/j.issn.1001-4160.2012.11.004

    Article  Google Scholar 

  13. C. Boher, F. Frizon, S. Lorente et al., Influence of the pore network on hydrogen diffusion through blended cement pastes. Cem. Concr. Compos. 37, 30–36 (2013). https://doi.org/10.1016/j.cemconcomp.2012.12.009

    Article  Google Scholar 

  14. H.T. Vu, F. Frizon, S. Lorente, Architecture for gas transport through cementitious materials. J. Phys. D Appl. Phys. 42, 105501 (2009). https://doi.org/10.1088/0022-3727/42/10/105501

    Article  Google Scholar 

  15. J. Sercombe, R. Vidal, C. Gallé et al., Experimental study of gas diffusion in cement paste. Cem. Concr. Res. 37, 579–588 (2007). https://doi.org/10.1016/j.cemconres.2006.12.003

    Article  Google Scholar 

  16. D.T. Niu, L.T. Chen, C.H. Zhang, Calculating model for gas diffusivity in concrete. J. Xi’an Univ. Archit. Technol. 39(6), 741–745 (2007). https://doi.org/10.3969/j.issn.1006-7930.2007.06.001. (in Chinese)

    Article  Google Scholar 

  17. Y.J. Tang, X.B. Zuo, G.J. Yin, Gas diffusion model in concrete based on pore structural parameters. J. Build. Mater. 18, 976–981 (2015). https://doi.org/10.3969/j.issn.1007-9629.2015.06.011. (in Chinese)

    Article  Google Scholar 

  18. F. Bardelli, C. Mondelli, M. Didier et al., Hydrogen uptake and diffusion in Callovo-Oxfordian clay rock for nuclear waste disposal technology. Appl. Geochem. 49, 168–177 (2014). https://doi.org/10.1016/j.apgeochem.2014.06.019

    Article  Google Scholar 

  19. C. Mondelli, F. Bardelli, J.G. Vitillo et al., Hydrogen adsorption and diffusion in synthetic Na- montmorillonites at high pressures and temperature. Int. J. Hydrogen Energy 40(6), 2698–2709 (2015). https://doi.org/10.1016/j.ijhydene.2014.12.038

    Article  Google Scholar 

  20. E. Jacops, K. Wouters, G. Volckaert et al., Measuring the effective diffusion coefficient of dissolved hydrogen in saturated Boom Clay. Appl. Geochem. 61, 175–184 (2015). https://doi.org/10.1016/j.apgeochem.2015.05.022

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-Hui Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, SW., Jia, ML., Jiao, XQ. et al. Safety study on HIC containing waste resin with respect to hydrogen release. NUCL SCI TECH 30, 57 (2019). https://doi.org/10.1007/s41365-019-0583-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-019-0583-5

Keywords

Navigation