Study on element detection and its correction in iron ore concentrate based on a prompt gamma-neutron activation analysis system

  • Long Zhao
  • Xu Xu
  • Jing-Bin LuEmail author
  • Ya-Lin Gong
  • Xiang-Lin Li
  • Wei Zhang
  • Qing-Min Shang
  • Qing-Feng Song
  • Yan-Feng Li


A prompt gamma-neutron activation analysis (PGNAA) system was developed to detect the iron content of iron ore concentrate. Because of the self-absorption effect of gamma-rays and neutrons, and the interference of chlorine in the neutron field, the linear relationship between the iron analytical coefficient and total iron content was poor, increasing the error in the quantitative analysis. To solve this problem, gamma-ray self-absorption compensation and a neutron field correction algorithm were proposed, and the experimental results have been corrected using this algorithm. The results show that the linear relationship between the iron analytical coefficient and total iron content was considerably improved after the correction. The linear correlation coefficients reached 0.99 or more.


Prompt gamma-neutron activation analysis Self-absorption Energy spectrum Compensation Correction Iron ore concentrate 


  1. 1.
    F.Y. Shi, J.Y. Ma, J.W. Zhao et al., Detection sensitivities of C and O in coal due to a channel in the moderator. Radiat. Meas. 46, 88–91 (2011). CrossRefGoogle Scholar
  2. 2.
    A.A. Naqvi, A Monte Carlo comparison of PGNAA system performance using 252Cf neutrons, 2.8-MeV neutrons and 14-MeV neutrons. Nucl. Instrum. Methods A 511, 400–407 (2003). CrossRefGoogle Scholar
  3. 3.
    A. Favalli, H.C. Mehner, V. Ciriello et al., Investigation of PGNAA using the LaBr 3 scintillation detector. Appl. Radiat. Isot. 68, 901–904 (2010). CrossRefGoogle Scholar
  4. 4.
    C. Oliveira, J. Salgado, F. Leitao, Density and water content corrections in the gamma count rate of a PGNAA system for cement raw material analysis using the MCNP Code. Appl. Radiat. Isot. 49, 923–930 (1998). CrossRefGoogle Scholar
  5. 5.
    A.X. da Silva, V.R. Crispim, Moderator-collimator-shielding design for neutron radiography systems using 252Cf. Appl. Radiat. Isot. 54, 217–225 (2001). CrossRefGoogle Scholar
  6. 6.
    C. Oliveira, J. Salgado, I.F. Goncalves et al., A Monte Carlo study of the influence of the geometry arrangements and structural materials on a PGNAA system performance for cement raw material analysis. Appl. Radiat. Isot. 48, 1349–1354 (1997). CrossRefGoogle Scholar
  7. 7.
    J.B. Yang, X.G. Tuo, Z. Li et al., Mc simulation of a PGNAA system for on-line cement analysis. Nucl. Sci. Tech. 21, 221–226 (2010). CrossRefGoogle Scholar
  8. 8.
    A.A. Naqvi, M.M. Nagadi, Performance comparison of an 241Am-Be neutron source-based PGNAA setup with the KFUPM PGNAA setup. J. Radioanal. Nucl. Chem. 260, 641–646 (2004). CrossRefGoogle Scholar
  9. 9.
    F. Zhang, J.T. Liu, Monte Carlo simulation of PGNAAsystem for determining element content in the rock sample. J. Radioanal. Nucl. Chem. 299, 1219–1224 (2014). CrossRefGoogle Scholar
  10. 10.
    L.Z. Zhang, B.F. Ni, W.Z. Tian et al., Status and development of prompt γ-ray neutron activation analysis. Atom. Energy Sci. Technol. 39, 282–288 (2005). (in Chinese) CrossRefGoogle Scholar
  11. 11.
    W. Zhang, L. Zhao, Y.F. Li, Neutron activation analyzer radiological monitoring system. Mod. Min. 8, 188–189 (2017). CrossRefGoogle Scholar
  12. 12.
    C.S. Lim, J.R. Tickner, B.D. Sowerby et al., An on-belt elemental analyser for the cement industry. Appl. Radiat. Isot. 54, 11–19 (2001). CrossRefGoogle Scholar
  13. 13.
    Q.F. Song, Y.L. Gong, W. Zhang et al., Feasibility study for on-line analysis of bauxite using a PGNAA system. China Min. Mag. 10, 171–174 (2015). (in Chinese) CrossRefGoogle Scholar
  14. 14.
    B.R. Wang, G.H. Yin, Z.P. Yang, Identification system for chemical warfare agents with PGNAA method. Nucl. Electron. Detect. Technol. 27, 621–623 (2007). (in Chinese) CrossRefGoogle Scholar
  15. 15.
    Y.L. Gong, W. Zhang, J.T. Tao, et al. CN 201348615Y, Adjustable multi element analyzer, 2008Google Scholar
  16. 16.
    C. Cheng, W.B. Jia, D.Q. Hei et al., Study of influence of neutron field and γ-ray self-absorption on PGNAA measurement. Atom. Energy Sci. Technol. 48, 802–806 (2014). (in Chinese) CrossRefGoogle Scholar
  17. 17.
    M.E. Medhat, Gamma-ray attenuation coefficients of some building materials available in Egypt. Ann. Nucl. Energy 36, 849–852 (2009). CrossRefGoogle Scholar
  18. 18.
    L.T. Yang, C.F. Chen, X.X. Jin et al., Research on accurate calculation method of γ-ray self-absorption correction factor. Atom. Energy Sci. Technol. 51, 323–329 (2017). (in Chinese) CrossRefGoogle Scholar
  19. 19.
    Reedy and Frankle, At. Data Nucl. Data Tables 80, 1, 2002. Accessed 9 Mar 2019
  20. 20.
    W.B. Jia, C. Cheng, Q. Shan et al., Study on the elements detection and its correction in aqueous solution. Nucl. Instrum. Methods B 342, 240–243 (2015). CrossRefGoogle Scholar
  21. 21.
    K. Sudarshan, R. Tripathi et al., A simple method for correcting the neutron self-shielding effect of matrix and improving the analytical response in prompt gamma-ray neutron activation analysis. Anal. Chim. Acta 549, 205–211 (2005). CrossRefGoogle Scholar
  22. 22.
    Z.H. Wu, H.Q. Qi, N.X. Shen et al., Experimental Method of Nuclear Physics (Atomic Energy Press, Beijing, 1997), pp. 65–66. (in Chinese) Google Scholar

Copyright information

© China Science Publishing & Media Ltd. (Science Press), Shanghai Institute of Applied Physics, the Chinese Academy of Sciences, Chinese Nuclear Society and Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Long Zhao
    • 1
    • 2
  • Xu Xu
    • 1
  • Jing-Bin Lu
    • 1
    Email author
  • Ya-Lin Gong
    • 2
  • Xiang-Lin Li
    • 3
  • Wei Zhang
    • 2
  • Qing-Min Shang
    • 2
  • Qing-Feng Song
    • 2
  • Yan-Feng Li
    • 2
  1. 1.College of PhysicsJilin UniversityChangchunChina
  2. 2.Dandong Dongfang Measurement & Control Technology Co., LtdDandongChina
  3. 3.Hunan First Normal UniversityChangshaChina

Personalised recommendations