Advertisement

Generation of two-color polarization-adjustable radiation pulses for storage ring light source

  • Wei-Hang Liu
  • Yi Wu
  • Yi JiaoEmail author
  • Zheng-He Bai
  • Sheng Wang
Article
  • 26 Downloads

Abstract

To date, two-color pulses are widely used in pump–probe experiments. For a ring-based light source, the power of the spontaneous radiation fluctuates randomly in the longitudinal direction. It is difficult to produce two-color double pulses by optical methods. In this paper, we introduce a method based on the echo-enabled harmonic generation scheme that generates two-color pulses in a storage ring light source. By adopting crossed undulators and a phase shifter, the polarization of the two-color pulses can be easily switched. A numerical simulation based on a diffraction-limited storage ring, the Hefei Advanced Light Source, suggests that the time delay and spectral separation of the two pulses can be adjusted linearly by changing the pulse duration and chirp parameters of the seed laser. A circular polarization degree above 80% could be achieved.

Keywords

Two-color pulses Echo-enabled harmonic generation Diffraction-limited storage ring Crossed undulators Circular polarization 

Notes

Acknowledgements

The authors thank Guanqun Zhou at IHEP, Tong Zhang at FRIB, Ling Zeng, and Gang Zhao at Peking University for helpful discussions.

References

  1. 1.
    A. Röhm, Dynamic Scenarios in Two-State Quantum Dot Lasers: Excited State Lasing, Ground State Quenching, and Dual-Mode Operation (Springer, Berlin, 2015)CrossRefGoogle Scholar
  2. 2.
    H. Anetai, T. Takeda, N. Hoshino et al., Circular polarized luminescence of hydrogen-bonded molecular assemblies of chiral pyrene derivatives. J. Phys. Chem. C 122, 6323 (2018).  https://doi.org/10.1021/acs.jpcc.7b12747 CrossRefGoogle Scholar
  3. 3.
    P. Emma, K. Bane, M. Cornacchia et al., Femtosecond and subfemtosecond X-ray pulses from a self-amplified spontaneous-emission-based free-electron laser. Phys. Rev. Lett. 92, 074801 (2004).  https://doi.org/10.1103/PhysRevLett.92.074801 CrossRefGoogle Scholar
  4. 4.
    A.A. Lutman, R. Coffee, Y. Ding et al., Experimental demonstration of femtosecond two-color X-ray free-electron lasers. Phys. Rev. Lett. 110, 134801 (2013).  https://doi.org/10.1103/PhysRevLett.110.134801 CrossRefGoogle Scholar
  5. 5.
    A. Lutman, T. Maxwell, J. MacArthur et al., Fresh-slice multicolour X-ray free-electron lasers. Nat. Photon. 10, 745 (2016).  https://doi.org/10.1038/nphoton.2016.201 CrossRefGoogle Scholar
  6. 6.
    R. Bonifacio, C. Pellegrini, L.M. Narducci, Collective instabilities and high-gain regime free electron laser. AIP Conf. Proc. 118, 236 (1984).  https://doi.org/10.1063/1.34640 CrossRefGoogle Scholar
  7. 7.
    L.H. Yu, Generation of intense UV radiation by subharmonically seeded single-pass free-electron lasers. Phys. Rev. A 44, 5178 (1991).  https://doi.org/10.1103/PhysRevA.44.5178 CrossRefGoogle Scholar
  8. 8.
    G. Stupakov, Using the beam-echo effect for generation of short-wavelength radiation. Phys. Rev. Lett. 102, 074801 (2009).  https://doi.org/10.1103/PhysRevLett.102.074801 CrossRefGoogle Scholar
  9. 9.
    D. Xiang, G. Stupakov, Echo-enabled harmonic generation free electron laser. Phys. Rev. Spec. Top. Accel. Beams 12, 030702 (2009).  https://doi.org/10.1103/PhysRevSTAB.12.030702 CrossRefGoogle Scholar
  10. 10.
    E. Allaria, R. Appio, L. Badano et al., Highly coherent and stable pulses from the FERMI seeded free-electron laser in the extreme ultraviolet. Nat. Photon. 6, 699 (2012).  https://doi.org/10.1038/nphoton.2012.233 CrossRefGoogle Scholar
  11. 11.
    E. Allaria, F. Bencivenga, R. Borghes et al., Two-colour pump–probe experiments with a twin-pulse-seed extreme ultraviolet free-electron laser. Nat. Commun. 4, 2476 (2013).  https://doi.org/10.1038/ncomms3476 CrossRefGoogle Scholar
  12. 12.
    B. Mahieu, E. Allaria, D. Castronovo et al., Two-colour generation in a chirped seeded free-electron laser: a close look. Opt. Express 21, 22728 (2013).  https://doi.org/10.1364/OE.21.022728 CrossRefGoogle Scholar
  13. 13.
    C. Feng, Z. Wang, X. Wang et al., Generation of two-color ultra-short radiation pulses from two electron bunches and a chirped seeded free-electron laser. Nucl. Inst. Methods Phys. Res. A 807, 79 (2016).  https://doi.org/10.1016/j.nima.2015.11.001 CrossRefGoogle Scholar
  14. 14.
    S. Sasaki, Analyses for a planar variably-polarizing undulator. Nucl. Inst. Methods Phys. Res. A 347, 83 (1994).  https://doi.org/10.1016/0168-9002(94)91859-7 MathSciNetCrossRefGoogle Scholar
  15. 15.
    J. Bahrdt, W. Frentrup, A. Gaupp et al., Magnetic field optimization of permanent magnet undulators for arbitrary polarization. Nucl. Inst. Methods Phys. Res. A 516, 575 (2004).  https://doi.org/10.1016/j.nima.2003.08.155 CrossRefGoogle Scholar
  16. 16.
    K.J. Kim, A synchrotron radiation source with arbitrarily adjustable elliptical polarization. Nucl. Inst. Methods Phys. Res. A 219, 425 (1984)CrossRefGoogle Scholar
  17. 17.
    K.J. Kim, Circular polarization with crossed-planar undulators in high-gain FELs. Nucl. Inst. Methods Phys. Res. A 445, 329 (2000).  https://doi.org/10.1016/S0168-9002(00)00137-6 CrossRefGoogle Scholar
  18. 18.
    Y. Ding, Z. Huang, Statistical analysis of crossed undulator for polarization control in a self-amplified spontaneous emission free electron laser. Phys. Rev. Spec. Top. Accel. Beams 11, 030702 (2008).  https://doi.org/10.1103/PhysRevSTAB.11.030702 CrossRefGoogle Scholar
  19. 19.
    H. Geng, Y. Ding, Z. Huang, Crossed undulator polarization control for X-ray FELs in the saturation regime. Nucl. Inst. Methods Phys. Res. A 622, 276 (2010).  https://doi.org/10.1016/j.nima.2010.07.050 CrossRefGoogle Scholar
  20. 20.
    H. Deng, T. Zhang, L. Feng et al., Polarization switching demonstration using crossed-planar undulators in a seeded free-electron laser. Phys. Rev. Spec. Top. Accel. Beams 17, 020704 (2014).  https://doi.org/10.1103/PhysRevSTAB.17.020704 CrossRefGoogle Scholar
  21. 21.
    R. Molo, M. Höner, H. Huck et al., EEHG and Femtoslicing at DELTA, in Proceedings of FEL2013, New York, USA, pp. 594–597 (2013)Google Scholar
  22. 22.
    C. Evain, A. Loulergue, A. Nadji et al., Soft X-ray femtosecond coherent undulator radiation in a storage ring. New J. Phys. 14, 023003 (2012).  https://doi.org/10.1088/1367-2630/14/2/023003 CrossRefGoogle Scholar
  23. 23.
    W. Gao, H. Li, L. Wang, Preliminary study of EEHG-based superradiant undulator radiation at the HLS-II storage ring. Chin. Phys. C 41, 078101 (2017).  https://doi.org/10.1088/1674-1137/41/7/078101 CrossRefGoogle Scholar
  24. 24.
    W. Liu, G. Zhou, Y. Jiao, Generating femtosecond coherent X-ray pulses in a diffraction-limited storage ring with the echo-enabled harmonic generation scheme. Nucl. Sci. Tech. 29, 143 (2018).  https://doi.org/10.1007/s41365-018-0476-z CrossRefGoogle Scholar
  25. 25.
    N. Hu, Z.H. Bai, W. Li et al., Estimates of collective effects in the HALS storage ring having the first version lattice, in Proceedings of IPAC2017, Copenhagen, Denmark, pp. 3770–3773 (2017)Google Scholar
  26. 26.
    Z.H. Bai, W. Li, L. Wang et al., Design of the second version of the HALS storage ring lattice, in Proceedings of IPAC2018, Vancouver, BC, Canada, pp. 4601–4604 (2018)Google Scholar
  27. 27.
    L. Yu, J. Wu, Theory of high gain harmonic generation: an analytical estimate. Nucl. Instrum. Methods Phys. Res. Sect. A 483, 493 (2002).  https://doi.org/10.1016/S0168-9002(02)00368-6 CrossRefGoogle Scholar
  28. 28.
    M. Born, W. Emil, Principles of Optics (Cambridge University Press, Cambridge, 2009)Google Scholar
  29. 29.
    S. Reiche, GENESIS 1.3: a fully 3D time-dependent FEL simulation code. Nucl. Inst. Methods Phys. Res. A 429, 243 (1999).  https://doi.org/10.1016/S0168-9002(99)00114-X CrossRefGoogle Scholar
  30. 30.
    M. Borland, Elegant: A flexible SDDS-compliant code for accelerator simulation, Advance Photon Source. United States: N. p. (2000).  https://doi.org/10.2172/761286
  31. 31.
    E. Wigner, On the quantum correction for thermodynamic equilibrium. Phys. Rev. 40, 749 (1932).  https://doi.org/10.1103/PhysRev.40.749 CrossRefzbMATHGoogle Scholar
  32. 32.
    N. Hay, I. Baker, Y. Guo et al., Stability-enhanced, high-average power green lasers for precision semiconductor, in Processing in Solid State Lasers XXI: Technology and Devices (Vol. 8235, p. 82351E)Google Scholar
  33. 33.
    M. Poulter, N. Hay, B. Fulford et al., Q-switched Nd: YAG lasers for high average-power and high peak-power operation, in Processing in Solid State Lasers XVIII: Technology and Devices (Vol. 7193, p. 719309)Google Scholar
  34. 34.
    D. Li, H. Jussila, Y. Wang et al., Wavelength and pulse duration tunable ultrafast fiber laser mode-locked with carbon nanotubes. Sci. Rep. 8, 2738 (2018).  https://doi.org/10.1038/s41598-018-21108-3 CrossRefGoogle Scholar
  35. 35.
    E. Treacy, Optical pulse compression with diffraction gratings. IEEE J. Quantum Electron. 5, 454 (1969).  https://doi.org/10.1109/JQE.1969.1076303 CrossRefGoogle Scholar

Copyright information

© China Science Publishing & Media Ltd. (Science Press), Shanghai Institute of Applied Physics, the Chinese Academy of Sciences, Chinese Nuclear Society and Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Wei-Hang Liu
    • 1
    • 2
  • Yi Wu
    • 2
  • Yi Jiao
    • 1
    Email author
  • Zheng-He Bai
    • 3
  • Sheng Wang
    • 4
  1. 1.Key Laboratory of Particle Acceleration Physics and Technology, Institute of High Energy PhysicsChinese Academy of SciencesBeijingChina
  2. 2.University of Chinese Academy of SciencesBeijingChina
  3. 3.National Synchrotron Radiation LaboratoryUniversity of Science and Technology of ChinaHefeiChina
  4. 4.China Spallation Neutron Source, Institute of High Energy PhysicsChinese Academy of SciencesDongguanChina

Personalised recommendations