Advertisement

Exploratory study of betavoltaic battery using ZnO as the energy converting material

  • Xiao-Yi Li
  • Jing-Bin LuEmail author
  • Yu-Min Liu
  • Xu Xu
  • Rui He
  • Ren-Zhou Zheng
Article
  • 13 Downloads

Abstract

Third-generation-semiconductor zinc oxide is utilized as an energy converting material in a betavoltaic battery, where 0.06 Ci 63Ni and 8 Ci 147Pm are used as the beta sources. Based on a Monte Carlo simulation, the full scales of the devices are derived as 17 and 118 μm, respectively, for both sources. The influences of semiconductor doping concentrations on the electrical properties of the devices are analyzed. For a typical doping concentration NA= 1017 cm−3, ND= 1016 cm−3, the conversion efficiencies are 7.177% and 1.658%, respectively, using 63Ni and 147Pm sources. The calculation results of energy deposition in materials for the two sources show that the doping concentrations drop to 1 × 1013–5×1014 cm−3 and 1 × 1012–5×1013, and accordingly, the energy conversion efficiencies rise to 14.212% and 18.359%, respectively.

Keywords

Radioisotope Beta voltaic effect Zinc oxide Nuclear battery Monte Carlo simulation 

References

  1. 1.
    S.C. Hao, Z.M. Lu, X.M. Fu et al., Nuclear battery materials and application of nuclear batteries. Nucl. Phys. Rev. 23(3), 353–358 (2006). (in Chinese) Google Scholar
  2. 2.
    D.R. Li, L. Jiang, J.H. Yin et al., Betavoltaic battery conversion efficiency improvement based on interlayer structures. Chin. Phys. Lett. 29(29), 78102–78105(4) (2012).  https://doi.org/10.1088/0256-307x/29/7/078102 CrossRefGoogle Scholar
  3. 3.
    G. Gui, K. Zhang, J.P. Blanchard et al., Prediction of 4H–SiC betavoltaic microbattery characteristics based on practical Ni-63 sources. Appl. Radiat. Isot. 107, 272–277 (2016).  https://doi.org/10.1016/j.apradiso.2015.11.001 CrossRefGoogle Scholar
  4. 4.
    L. Zhang, H.L. Cheng, X.C. Hu et al., Model and optimal design of 147 Pm SiC-based betavoltaic cell. Superlattices Microstruct. 123, 60–70 (2018).  https://doi.org/10.1016/j.spmi.2018.01.007 CrossRefGoogle Scholar
  5. 5.
    C. Thomas, S. Portnoff, M.G. Spencer, High efficiency 4H-SiC betavoltaic power sources using tritium radioisotopes. Appl. Phys. Lett. 108(1), 013505 (2016).  https://doi.org/10.1063/1.4939203 CrossRefGoogle Scholar
  6. 6.
    C.E. Munson, Q. Gaimard, K. Merghem et al., Modeling, design, fabrication and experimentation of a GaN-based, 63Ni betavoltaic battery. J. Phys. D Appl. Phys. 51(3), 035101 (2017).  https://doi.org/10.1088/1361-6463/aa9e41 CrossRefGoogle Scholar
  7. 7.
    N. Ayarcı Kuruoğlu, O. Özdemir, K. Bozkurt, Betavoltaic study of a GaN p-i-n structure grown by metal-organic vapour phase epitaxy with a Ni-63 source. Thin Solid Films 636, 746–750 (2017).  https://doi.org/10.1016/j.tsf.2017.07.033 CrossRefGoogle Scholar
  8. 8.
    B.H. Kim, J.W. Kwon, Plasmon-assisted radiolytic energy conversion in aqueous solutions. Sci. Rep. (2014).  https://doi.org/10.1038/srep05249 CrossRefGoogle Scholar
  9. 9.
    H. Guo, H. Yang, Y. Zhang. Betavoltaic microbatteries using porous silicon, in IEEE International Conference on MICRO Electro Mechanical Systems (IEEE, 2007), pp. 867–870Google Scholar
  10. 10.
    X.J. Yang, X.L. Xu, J.C. Xie et al., Research of ZnO homogeneous p–n junction. J. Vac. Sci. Technol. (China) 25(s1), 101–104 (2005). (in Chinese) Google Scholar
  11. 11.
    Y.N. He, C.C. Zhu, X. Hou, Recent advances in characteristics of ZnO semiconductor. J. Funct. Mater. Devices 14(03), 566–574 (2008). (in Chinese) Google Scholar
  12. 12.
    M.A. Prelas, C.L. Weaver, M.L. Watermann et al., A review of nuclear batteries. Prog. Nucl. Energy 75, 117–148 (2014).  https://doi.org/10.1016/j.pnucene.2014.04.007 CrossRefGoogle Scholar
  13. 13.
    H.D. Wang, Research on the On-line Coal Analysis Based on Neutron Activation and the Energy Transport of β-Voltaic Nuclear Battery (Jilin University, Changchun, 2012). (in Chinese) Google Scholar
  14. 14.
    H.D. Wang, Y.M. Liu, K. Yang et al., The transport of β particle in Beta- voltaic Battery. Prog. Rep. Chin. Nucl. Sci. Technol. 2, 157–164 (2011). (in Chinese) Google Scholar
  15. 15.
    L.P. Yang, F. Liu, H.P. Han, Research and development of ZnO. Microelectromech. Technol. 44(2), 81–87 (2007). (in Chinese) Google Scholar
  16. 16.
    A. Janotti, dWCG Van, Fundamentals of zinc oxide as a semiconductor. Rep. Prog. Phys. 72(12), 126501 (2009).  https://doi.org/10.1088/0034-4885/72/12/126501 CrossRefGoogle Scholar
  17. 17.
    L.L. Chen, Z.Z. Ye, J.G. Lu et al., Control and improvement of p-type conductivity in indium and nitrogen codoped ZnO thin films. Appl. Phys. Lett. 89(25), 547 (2006).  https://doi.org/10.1063/1.2405858 CrossRefGoogle Scholar
  18. 18.
    N. Narayanan, D.N. Kannoth, Exploring p type conductivity in ZnO thin films by In–N codoping for homo-junction devices. J. Mater. Sci.: Mater. Electron. 28(8), 1–9 (2016).  https://doi.org/10.1007/s10854-016-6270-y CrossRefGoogle Scholar
  19. 19.
    J.M. Bian, X.M. Li, C.Y. Zhang et al., Synthesis and characterization of two-layer-structured ZnO p–n homojunctions by ultrasonic spray pyrolysis. Appl. Phys. Lett. 84(19), 3783–3785 (2004).  https://doi.org/10.1063/1.1739280 CrossRefGoogle Scholar
  20. 20.
    X. Yang, X. Xu, F. Liu et al., Fabrication of p-ZnO:Na/n-ZnO: Na homojunction by surface pulsed laser irradiation. RSC. Adv. 7(59), 37296–37301 (2017).  https://doi.org/10.1039/C7RA05574A CrossRefGoogle Scholar
  21. 21.
    J.G. Lu, Y.Z. Zhang, Z.Z. Ye et al., Low-resistivity, stable p-type ZnO thin films realized using a Li-N dual-acceptor doping method. Appl. Phys. Lett. 88, 222114 (2006).  https://doi.org/10.1063/1.2209191 CrossRefGoogle Scholar
  22. 22.
    P.A. Wahid, An Introduction to Isotopes and Radiations (Allied Publishers, New Delhi, 2001), p. 94Google Scholar
  23. 23.
    J.G. Lu, Z.Z. Ye, G.D. Yuan et al., Electrical characterization of ZnO-based homojunctions. Appl. Phys. Lett. 89(5), 2203 (2006).  https://doi.org/10.1063/1.2245221 CrossRefGoogle Scholar
  24. 24.
    G.Q. Wang, H.M. Zhang, S.Z. Luo et al., Electrical capabilities of silicon diode on irradiating. J. Isot. 21(4), 198–203 (2008). (in Chinese) Google Scholar
  25. 25.
    D.C. Look, Electrical and optical properties of p-type ZnO. Semicond. Sci. Tech. 20, S55–S61 (2005).  https://doi.org/10.1088/0268-1242/20/4/007 CrossRefGoogle Scholar
  26. 26.
    X.B. Tang, Y.P. Liu, D. Ding et al., Optimization design of GaN betavoltaic microbattery. Sci China Tech Sci 55, 659–664 (2012).  https://doi.org/10.1007/s11431-011-4739-8. (in Chinese) CrossRefGoogle Scholar
  27. 27.
    Y.P. Liu, X.B. Tang, Z.H. Xu et al., Influences of planar source thickness on betavoltaics with different semiconductors. J. Radioanal. Nucl. Chem. 304(2), 517–525 (2015).  https://doi.org/10.1007/s10967-014-3879-2 CrossRefGoogle Scholar
  28. 28.
    X.B. Tang, Y.P. Liu, D. Ding et al., Optimization design of GaN betavoltaic microbattery. Sci. China. Tech Sci. 55, 659–664 (2012).  https://doi.org/10.1007/s11431-011-4739-8 CrossRefGoogle Scholar

Copyright information

© China Science Publishing & Media Ltd. (Science Press), Shanghai Institute of Applied Physics, the Chinese Academy of Sciences, Chinese Nuclear Society and Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Xiao-Yi Li
    • 1
  • Jing-Bin Lu
    • 1
    Email author
  • Yu-Min Liu
    • 1
  • Xu Xu
    • 1
  • Rui He
    • 1
  • Ren-Zhou Zheng
    • 1
  1. 1.College of PhysicsJilin UniversityChangchunChina

Personalised recommendations