Performance of an electron linear accelerator for the first photoneutron source in China

  • Xuan Li
  • Jun-Qiang Zhang
  • Guo-Qiang Lin
  • Wen-Cheng Fang
  • Qiang Gu
  • Meng ZhangEmail author


A compact 15.0-MeV, 1.5-kW electron linear accelerator (LINAC) was successfully constructed to provide an electron beam for the first photoneutron source at the Shanghai Institute of Applied Physics, Shanghai, China. This LINAC consists of five main parts: a thermal cathode grid-controlled electron gun, a pre-buncher, a variable-phase-velocity buncher, a light-speed accelerating structure, and a high-power transportation beamline. A digital feedforward radio frequency compensator is adopted to reduce the energy spread caused by the transient beam loading effect. Furthermore, a real-time electron gun emission feedback algorithm is used to keep the beam stable. After months of efforts, all the beam parameters successfully met the requirements of the facility. In this paper, the beam commissioning process and performance of the LINAC are presented.


Electron linear accelerator High-power transportation beamline Digital feedforward radio frequency compensation Real-time electron gun emission feedback algorithm Transmission efficiency 



We would like to express our sincere thanks to SINAP members of the Department of Reactor Physics. We are also very grateful to the SINAP members of the Vacuum Group, Power Supply Group, Beam Instrumentation Group, Control Group, and Pulse Group for technical assistance.


  1. 1.
    Z.K. Lin, G.M. Sun, J.G. Chen et al., Simulation and optimization for a 30-MeV electron accelerator driven neutron source. Nucl. Sci. Tech. 23, 272–276 (2012). CrossRefGoogle Scholar
  2. 2.
    L.X. Liu, H.W. Wang, Y.G. Ma et al., Measurements of the total cross section of natBe with thermal neutrons from a photo-neutron source. Nucl. Instrum. Meth. B 410, 158–163 (2017). CrossRefGoogle Scholar
  3. 3.
    H.W. Wang, J.G. Chen, X.Z. Cai et al., Development of photo-neutron facility driven by electron LINAC. Nucl. Tech. 37, 100522 (2014). (in Chinese) CrossRefGoogle Scholar
  4. 4.
    R.M. Ji, M.H. Li, Y. Zou et al., Impact of photoneutrons on reactivity measurements for TMSR-SF1. Nucl. Sci. Tech. 28, 76 (2017). CrossRefGoogle Scholar
  5. 5.
    W.P. Swanso, Radiological Safety Aspects of the Operation of Electron Linear Accelerators (IAEA, Vienna, 1979), pp. 79–96Google Scholar
  6. 6.
    M. Zhang, X. Li, W.C. Fang et al, Linac design for nuclear data measurement facility, in Proceedings of Proceedings of the 4th International Particle Accelerator Conference (IPAC), Shanghai, China, May 2013, pp. 1229-1231Google Scholar
  7. 7.
    Z. Nergiz, A. Aksoy, Injector of the Turkish light source facility TURKAY. Nucl. Sci. Tech. 28, 161 (2017). CrossRefGoogle Scholar
  8. 8.
    B.C. Jiang, G.Q. Lin, B.L. Wang et al., Multi-bunch injection for SSRF storage ring. Nucl. Sci. Tech. 26, 050101 (2015). CrossRefGoogle Scholar
  9. 9.
    H.L. Ding, M.H. Zhao, C.C. Xiao et al., An S-band solid-state radio frequency power amplifier used at Shanghai soft X-ray FEL facility. Nucl. Sci. Tech. 27, 146 (2016). CrossRefGoogle Scholar
  10. 10.
    T.P. Wangler, RF Linear Accelerators, 2nd edn. (Wiley-VCH, Weinheim, 2008)CrossRefGoogle Scholar
  11. 11.
    R.B. Neal, The Stanford Two Mile Accelerator (W.A. Benjamin, Inc., New York, 1968)Google Scholar
  12. 12.
    J.H. Tan, D.C. Tong, Q. Gu et al., Development of a nonresonant perturbation technique and its application to multicell traveling-wave deflectors. Nucl. Instrum. Meth. A 835, 148–156 (2016). CrossRefGoogle Scholar
  13. 13.
    Z.T. Zhao, C. Feng, K.Q. Zhang et al., Two-stage EEHG for coherent hard X-ray generation based on a superconducting linac. Nucl. Sci. Tech. 28, 117 (2017). CrossRefGoogle Scholar
  14. 14.
    C. Feng, H.X. Deng, Review of fully coherent free-electron lasers. Nucl. Sci. Tech. 29, 160 (2017). CrossRefGoogle Scholar
  15. 15.
    Eimac, CPI, Electron Sources(2018). Accessed 29 Aug. 2018
  16. 16.
    W.Y. Zhang, X.Q. Liu, L. Feng et al., 2856 GHz microwave signal extraction from mode-locked Er-fiber lasers with sub-100 femtosecond timing jitter. Nucl. Sci. Tech. 29, 91 (2018). CrossRefGoogle Scholar
  17. 17.
    Q.L. Yu, D. Gu, M. Zhang et al., Transverse phase space reconstruction study in Shanghai soft X-ray FEL facility. Nucl. Sci. Tech. 29, 9 (2018). CrossRefGoogle Scholar
  18. 18.
    J.Q. Zhang, Y.J. Liu, S.P. Zhong et al., Low level radio frequency system of 15-MeV electrons linac. Nucl. Tech. 39, 030403 (2016). (in Chinese) CrossRefGoogle Scholar
  19. 19.
    S. Li, J.Q. Zhang, M. Zhang et al., Implementation of FPGA-based feedforward function in LLRF system for electron LINAC. Nucl. Tech. 39, 070402 (2016). (in Chinese) CrossRefGoogle Scholar
  20. 20.
    C.H. Miao, M. Liu, C.X. Yin et al., Precise magnetic field control of the scanning magnets for the APTRON beam delivery system. Nucl. Sci. Tech. 28, 172 (2017). CrossRefGoogle Scholar
  21. 21.
    X.H. Tang, Y.J. Liu, J.Q. Zhang et al., An automatic frequency control system based on MicroTCA. Nucl. Tech. 39, 070102 (2016). (in Chinese) CrossRefGoogle Scholar
  22. 22.
    Z.Q. Geng, Beam-based optimization of SwissFEL low-level RF system. Nucl. Sci. Tech. 29, 128 (2018). CrossRefGoogle Scholar

Copyright information

© China Science Publishing & Media Ltd. (Science Press), Shanghai Institute of Applied Physics, the Chinese Academy of Sciences, Chinese Nuclear Society and Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Xuan Li
    • 1
    • 2
    • 3
  • Jun-Qiang Zhang
    • 1
    • 2
  • Guo-Qiang Lin
    • 1
    • 2
  • Wen-Cheng Fang
    • 1
    • 2
  • Qiang Gu
    • 1
    • 2
  • Meng Zhang
    • 1
    • 2
    Email author
  1. 1.Shanghai Institute of Applied PhysicsChinese Academy of SciencesShanghaiChina
  2. 2.Shanghai Synchrotron Radiation FacilityChinese Academy of SciencesShanghaiChina
  3. 3.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations