Advertisement

Pocket formula for mass attenuation coefficient, effective atomic number, and electron density of human tissues

  • H. C. ManjunathaEmail author
  • L. Seenappa
Article
  • 2 Downloads

Abstract

We have proposed a pocket formula for mass attenuation coefficient (μ/ρ), mass energy absorption coefficient (μen/ρ), and effective atomic number (Zeff) in different tissues of human organs. We have also assigned a new chemical formula for all studied tissues based on their composition. We have introduced a new parameter called effective composition index (Ceff). Based on this, we have introduced a new method to compute the effective atomic number. The evaluated photon interaction parameters are graphically represented. The evaluated average, maximum, minimum, and standard deviations of effective atomic number are tabulated. The proposed formula produces a mass attenuation coefficient, mass energy absorption coefficient, and effective atomic number from their composition.

Keywords

Effective atomic number Mass attenuation coefficient Tissues 

References

  1. 1.
    D.A. Bradley, C.S. Chong, A.M. Ghose, Photon absorptiometric studies of elements, mixtures and substances of biomedical interest. Phys. Med. Biol. 31, 267–273 (1986).  https://doi.org/10.1088/0031-9155/31/3/005 CrossRefGoogle Scholar
  2. 2.
    J.W. Byng, J.G. Mainprize, M.J. Yaffe, X-ray characterization of breast phantom materials. Phys. Med. Biol. 43, 1367–1377 (1998).  https://doi.org/10.1088/0031-9155/43/5/026 CrossRefGoogle Scholar
  3. 3.
    J.H. Hubbell, S.M. Seltzer, Tables of X-ray mass attenuation coefficients and mass energy-absorption coefficients 1–20 MeV for elements Z = 1 to 92 and 48 additional substances of dosimetric interest. National Institute of Standards and Technology, Physical Reference Data 5632 (1995). http://physics.nist.gov/PhysRefData/XrayMassCoef/cover.html
  4. 4.
    M.J. Berger, J.H. Hubble, NBSIR 87-3597 (National institute of Standards and Technology, Gaithersburg). https://www.nist.gov
  5. 5.
    L. Gerward, N. Guilbert, K.B. Jensen et al., WinXCom—a program for calculating X-ray attenuation coefficients. Radiat. Phys. Chem. 71, 653–654 (2004).  https://doi.org/10.1016/j.radphyschem.2004.04.040 CrossRefGoogle Scholar
  6. 6.
    G.J. Hine, The effective atomic number of material for various γ interaction. Phys. Rev. 85, 725–730 (1952)Google Scholar
  7. 7.
    N.C. Yang, P.K. Leichner, W.G. Hawkins, Effective atomic number for low-energy total photon interactions in human tissues. Med. Phys. 14, 759–763 (1987).  https://doi.org/10.1118/1.596000 CrossRefGoogle Scholar
  8. 8.
    B.V. Rao, M.L. Raju, B.M. Rao et al., Interaction of low energy photons with biological samples and effective atomic number. Med. Phys. 12, 745–748 (1985).  https://doi.org/10.1118/1.595658 CrossRefGoogle Scholar
  9. 9.
    V. Manjunathaguru, T.K. Umesh, Effective atomic numbers and electron densities of some biologically important compounds containing H, C, N and O in the energy range 145–1330 keV. J. Phys. B - At. Mol. Opt. Phys. 39, 3969–3981 (2006).  https://doi.org/10.1088/0953-4075/39/18/025 CrossRefGoogle Scholar
  10. 10.
    M. Kurudirek, T. Onaran, Calculation of effective atomic number and electron density of essential biomolecules for electron, proton, alpha particle and multi-energetic photon interactions. Radiat. Phys. Chem. 112, 125–138 (2015).  https://doi.org/10.1016/j.radphyschem.2015.03.034 CrossRefGoogle Scholar
  11. 11.
    M. Kurudirek, Effective atomic numbers and electron densities of some human tissues and dosimetric materials for mean energies of various radiation sources relevant to radiotherapy and medical applications. Radiat. Phys. Chem. 102, 139–146 (2014).  https://doi.org/10.1016/j.radphyschem.2014.04.033 CrossRefGoogle Scholar
  12. 12.
    M. Kurudirek, O. Aksakal, T. Akkuş, Investigation of the effective atomic numbers of dosimetric materials for electrons, protons and alpha particles using a direct method in the energy region 10 keV–1 GeV: a comparative study. Radiat. Environ. Biol. Phys. 54, 481–492 (2015).  https://doi.org/10.1007/s00411-015-0606-5 CrossRefGoogle Scholar
  13. 13.
    H.C. Manjunatha, Influence of gamma irradiation on conductivity of YBa2Cu3O7. Radiat. Phys. Chem. 113, 24–27 (2015).  https://doi.org/10.1016/j.radphyschem.2015.04.010 CrossRefGoogle Scholar
  14. 14.
    L. Seenappa, H.C. Manjunatha, B.M. Chandrika et al., A study of shielding properties of X-ray and gamma in barium compounds. J. Radiat. Prot. Res. 42, 26–32 (2017).  https://doi.org/10.14407/jrpr.2017.42.1.26 CrossRefGoogle Scholar
  15. 15.
    H.C. Manjunatha, A study of gamma attenuation parameters in poly methyl methacrylate and Kapton. Radiat. Phys. Chem. 137, 254–259 (2016).  https://doi.org/10.1016/j.radphyschem.2016.01.024 CrossRefGoogle Scholar
  16. 16.
    H.C. Manjunatha, L. Seenappa, B.M. Chandrika et al., A study of photon interaction parameters in barium compounds. Ann. Nucl. Energy 109, 310–317 (2017).  https://doi.org/10.1016/j.anucene.2017.05.042 CrossRefGoogle Scholar
  17. 17.
    B. Rudraswamy, N. Dhananjaya, H.C. Manjunatha, Measurement of absorbed dose rate of gamma radiation for lead compounds. Nucl. Instrum. Methods A 619, 171–173 (2010).  https://doi.org/10.1016/j.nima.2009.11.026 CrossRefGoogle Scholar
  18. 18.
    H.C. Manjunatha, B.M. Chandrika, L. Seenappa et al., Study of gamma attenuation properties of tungsten copper alloys. Int. J. Nucl. Energy Sci. Technol. 10, 356–368 (2016).  https://doi.org/10.1504/IJNEST.2016.082005 CrossRefGoogle Scholar
  19. 19.
    H.C. Manjunatha, B. Rudraswamy, Study of effective atomic number and electron density for tissues from human organs in the energy range of 1 keV–100 GeV. Health Phys. 104, 158–162 (2013).  https://doi.org/10.1097/HP.0b013e31827132e3 CrossRefGoogle Scholar
  20. 20.
    K.C. Suresh, H.C. Manjunatha, B. Rudraswamy, Study of Zeff for DNA, RNA and retina by numerical methods. Radiat. Prot. Dosimetry. 128, 294–298 (2008).  https://doi.org/10.1093/rpd/ncm382 CrossRefGoogle Scholar
  21. 21.
    H.C. Manjunatha, B. Rudraswamy, Computation of CT-number and Z eff in Teeth. Health Phy. 100, S92–S99 (2011).  https://doi.org/10.1097/HP.0b013e3181f508ac CrossRefGoogle Scholar
  22. 22.
    H.C. Manjunatha, A study of photon interaction parameters in lung tissue substitutes. J. Med. Phys. 39, 112–115 (2014).  https://doi.org/10.4103/0971-6203.131286 CrossRefGoogle Scholar
  23. 23.
    H.C. Manjunatha, B.M. Chandrika, B. Rudraswamy et al., Beta Bremsstrahlung dose in concrete shielding. Nucl. Instrum. Methods A 674, 74–78 (2012).  https://doi.org/10.1016/j.nima.2012.01.046 CrossRefGoogle Scholar
  24. 24.
    H.C. Manjunatha, B. Rudraswamy, Energy absorption and exposure build-up factors in hydroxyapatite. Radiat. Meas. 47, 364–370 (2012).  https://doi.org/10.1016/j.radmeas.2012.02.001 CrossRefGoogle Scholar
  25. 25.
    H.C. Manjunatha, B. Rudraswamy, Computation of exposure build-up factors in teeth. Radiat. Phys. Chem. 80, 14–21 (2011).  https://doi.org/10.1016/j.radphyschem.2010.09.004 CrossRefGoogle Scholar
  26. 26.
    H.C. Manjunatha, B. Rudraswamy, Energy absorption build-up factors in teeth. J. Radioanal. Nucl. Chem. 294, 251–260 (2012).  https://doi.org/10.1007/s10967-011-1490-3 CrossRefGoogle Scholar
  27. 27.
    A. Tomal, I. Mazarro, E.M. Kakuno et al., Experimental determination of linear attenuation coefficient of normal, benign and malignant breast tissues. Radiat. Meas. 45, 1055–1059 (2010).  https://doi.org/10.1016/j.radmeas.2010.08.008 CrossRefGoogle Scholar
  28. 28.
    B.W. King, K.A. Landheer, P.C. Johns, X-ray coherent scattering form factors of tissues, water and plastics using energy dispersion. Phys. Med. Biol. 56, 4377–4397 (2011).  https://doi.org/10.1088/0031-9155/56/14/010 CrossRefGoogle Scholar
  29. 29.
    P.S. Rao, E.C. Gregg, Attenuation of monoenergetic gamma rays in tissues. Am. J. Roentgenol. 123, 631–637 (1975).  https://doi.org/10.2214/ajr.123.3.631 CrossRefGoogle Scholar
  30. 30.
    S. Mirji, N.M. Badiger, S.S. Kulkarni et al., Measurement of linear attenuation coefficients of normal and malignant breast tissues using synchrotron radiation. X-Ray Spectrum. 45, 185–189 (2016).  https://doi.org/10.1002/xrs.2685 CrossRefGoogle Scholar
  31. 31.
    A. Akar, H. Baltaş, U. Çevik et al., Measurement of attenuation coefficients for bone, muscle, fat and water at 140, 364 and 662 keV γ-ray energies. J. Quant. Spectrosc. Radiat. Transf. 102, 203–211 (2006).  https://doi.org/10.1016/j.jqsrt.2006.02.007 CrossRefGoogle Scholar
  32. 32.

Copyright information

© China Science Publishing & Media Ltd. (Science Press), Shanghai Institute of Applied Physics, the Chinese Academy of Sciences, Chinese Nuclear Society and Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of PhysicsGovernment College for WomenKolarIndia

Personalised recommendations