Advertisement

Performances of different efficiency calibration methods of high-purity-germanium gamma-ray spectrometry in an inter-comparison exercise

  • Bao-Lu Yang
  • Qiang Zhou
  • Jing Zhang
  • Shuai-Mo Yao
  • Ze-Shu Li
  • Wen-Hong Li
  • Fei TuoEmail author
Article
  • 32 Downloads

Abstract

This study reports the performances of efficiency calibrations for high-purity-germanium gamma-ray spectrometry using the source-, Laboratory Sourceless Object Calibration Software (LabSOCS)- and ANGLE-based methods in an inter-comparison exercise. Although the results of LabSOCS and ANGLE for 241Am emitting low-energy gamma rays were not very satisfactory, all of the three efficiency calibration methods passed acceptance criteria. The results confirmed the reliability of the calculation codes ANGLE and LabSOCS as alternative efficiency calibration methods in high-purity-germanium gamma spectrometry. This study is likely to promote the further application of the ANGLE and LabSOCS calculation codes in radioactivity measurements.

Keywords

Efficiency calibration ANGLE Laboratory Sourceless Object Calibration Software (LabSOCS) Gamma-ray spectrometry 

References

  1. 1.
    J. Saegusa, K. Kawasaki, A. Mihara et al., Determination of detection efficiency curves of HPGe detectors on radioactivity measurement of volume samples. Appl. Radiat. Isot. 61, 1383–1390 (2004).  https://doi.org/10.1016/j.apradiso.2004.04.004 CrossRefGoogle Scholar
  2. 2.
    M. Mostajaboddavati, S. Hassanzadeh, H. Faghihian et al., Efficiency calibration and measurement of self-absorption correction for environmental gamma-spectroscopy of soil samples using marinelli beaker. J. Radioanal. Nucl. Chem. 268, 539–544 (2006).  https://doi.org/10.1007/s10967-006-0202-x CrossRefGoogle Scholar
  3. 3.
    C.A. Mcmahon, M.F. Fegan, J. Wong et al., Determination of self-absorption corrections for gamma analysis of environmental samples: comparing gamma-absorption curves and spiked matrix-matched samples. Appl. Radiat. Isot. 60, 571–577 (2004).  https://doi.org/10.1016/j.apradiso.2003.11.081 CrossRefGoogle Scholar
  4. 4.
    F.L. Bronson, Validation of the accuracy of the LabSOCS software for mathematical efficiency calibration of Ge detectors for typical laboratory samples. J. Radioanal. Nucl. Chem. 255, 137–141 (2003).  https://doi.org/10.1023/A:1022248318741 CrossRefGoogle Scholar
  5. 5.
    S.J. Bell, S.M. Judge, P.H. Regan, An investigation of HPGe gamma efficiency calibration software (ANGLE V. 3) for applications in nuclear decommissioning. Appl. Radiat. Isot. 70, 2737–2741 (2012).  https://doi.org/10.1016/j.apradiso.2012.08.007 CrossRefGoogle Scholar
  6. 6.
    M.A. Kellett, Assessment of actinide decay data evaluations: findings of an IAEA coordinated research project. Appl. Radiat. Isot. 70, 1919–1923 (2012).  https://doi.org/10.1016/j.apradiso.2012.02.036 CrossRefGoogle Scholar
  7. 7.
    IAEA, Quantifying uncertainty in nuclear analytical measurements IAEA TECDOCs-1401 (International Atomic Energy Agency, Vienna, 2004)Google Scholar
  8. 8.
    IAEA, Report on the IAEA-CU-2006-04 ALMERA proficiency test on the determination of gamma emitting radionuclides IAEA/AL/170 (International Atomic Energy Agency, Vienna, 2007)Google Scholar
  9. 9.
    F. Tuo, Q. Zhang, J. Zhang et al., Inter-comparison exercise for determination of 226Ra, 232Th and 40K in soil and building material. Appl. Radiat. Isot. 68, 2335–2338 (2010).  https://doi.org/10.1016/j.apradiso.2010.04.023 CrossRefGoogle Scholar
  10. 10.
    I. Radulescu, M.R. Calin, Reliability and performances of a high-purity gamma spectrometry system used for environmental measurements. J. Radioanal. Nucl. Chem. 301, 141–146 (2014).  https://doi.org/10.1007/s10967-014-3150-x CrossRefGoogle Scholar
  11. 11.
    K. Abbas, F. Simonelli, F. D’Alberti et al., Reliability of two calculation codes for efficiency calibrations of HPGe detectors. Appl. Radiat. Isot. 56, 703–709 (2002).  https://doi.org/10.1016/S0969-8043(01)00269-X CrossRefGoogle Scholar
  12. 12.
    C. Rolle, Z. Lin, S. Healey, Computational approaches on photon-attenuation and coincidence-summing corrections for the detection of gamma-emitting radionuclides IN foods. Appl. Radiat. Isot. 126, 134–137 (2017).  https://doi.org/10.1016/j.apradiso.2017.02.034 CrossRefGoogle Scholar
  13. 13.
    M.S. Badawi, S.I. Jovanovic, A.A. Thabet et al., Calibration of 4π NaI(Tl) detectors with coincidence summing correction using new numerical procedure and ANGLE 4 software. AIP Adv. 7, 035005 (2017).  https://doi.org/10.1063/1.4978214 CrossRefGoogle Scholar
  14. 14.
    A.A. Thabet, A.D. Dlabac, S.I. Jovanovic et al., Experimental verification of gamma-efficiency calculations for scintillation detectors in Angle 4 software. Nucl. Technol. Radiat. 30, 35–46 (2015)CrossRefGoogle Scholar

Copyright information

© China Science Publishing & Media Ltd. (Science Press), Shanghai Institute of Applied Physics, the Chinese Academy of Sciences, Chinese Nuclear Society and Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Bao-Lu Yang
    • 1
  • Qiang Zhou
    • 1
  • Jing Zhang
    • 1
  • Shuai-Mo Yao
    • 1
  • Ze-Shu Li
    • 1
  • Wen-Hong Li
    • 1
  • Fei Tuo
    • 1
    Email author
  1. 1.Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological ProtectionChinese Center for Disease Control and PreventionBeijingChina

Personalised recommendations