Development and validation of depletion code system IMPC-Burnup for ADS

  • Zhao-Qing Liu
  • Ze-Long ZhaoEmail author
  • Yong-Wei YangEmail author
  • Yu-Cui Gao
  • Hai-Yan Meng
  • Qing-Yu Gao


Depletion calculation is important for studying the transmutation efficiency of minor actinides and long-life fission products in accelerator-driven subcritical reactor system (ADS). Herein the Python language is used to develop a burnup code system called IMPC-Burnup by coupling FLUKA, OpenMC, and ORIGEN2. The program is preliminarily verified by OECD-NEA pin cell and IAEA-ADS benchmarking by comparison with experimental values and calculated results from other studies. Moreover, the physics design scheme of the CIADS subcritical core is utilized to test the feasibility of IMPC-Burnup program in the burnup calculation of ADS system. Reference results are given by the COUPLE3.0 program. The results of IMPC-Burnup show good agreement with those of COUPLE3.0. In addition, since the upper limit of the neutron transport energy for OpenMC is 20 MeV, neutrons with energies greater than 20 MeV in the CIADS subcritical core cannot be transported; thus, an equivalent flux method has been proposed to consider neutrons above 20 MeV in the OpenMC transport calculation. The results are compared to those that do not include neutrons greater than 20 MeV. The conclusion is that the accuracy of the actinide nuclide mass in the burnup calculation is improved when the equivalent flux method is used. Therefore, the IMPC-Burnup code is suitable for burnup analysis of the ADS system.


ADS-coupled proton–neutron transport Burnup calculation IMPC-Burnup FLUKA OpenMC ORIGEN2 



The first author would like to acknowledge Mr. Hong Shuang for the technical support of FLUKA and OpenMC coupled calculation.


  1. 1.
    A. Stanculescu, Accelerator driven systems (ADSs) for nuclear transmutation. Ann. Nucl. Energy 62, 607–612 (2013)CrossRefGoogle Scholar
  2. 2.
    W.R. Martin, Challenges and prospects for whole-core Monte Carlo analysis. Nucl. Eng. Technol. 44, 151–160 (2012). CrossRefGoogle Scholar
  3. 3.
    R.L. Moore, B.G. Schnitzler, C.A. Wemple, et al., MOCUP:MCNP-ORIGEN2 coupled utility program. INEL-95/0523 (1995)Google Scholar
  4. 4.
    G.L. Yu, K. Wang, Y.H. Wang, MCBurn—a coupling package of program MCNP and ORIGEN. Atom. Energy Sci. Technol. 37, 250–254 (2003). (in Chinese) CrossRefGoogle Scholar
  5. 5.
    A. Talamo, W. Ji, J. Centar et al., Comparison of MCB and MONTEBURNS Monte Carlo burnup codes on a one-pass deep burn. Ann. Nucl. Energy 33, 1176–1188 (2006). CrossRefGoogle Scholar
  6. 6.
    A. Stankovskiy, G.V.D. Eynde, P. Baeten. et al., ALEPH2—a general purpose Monte Carlo depletion code. Paper presented at PHYSOR 2012: Conference on Advances in Reactor Physics—Linking Research, Industry, and Education. Knoxville, Tennessee, USA, 15–20 April (2012)Google Scholar
  7. 7.
    J. Leppänen, M. Pusa, T. Viitanen et al., The Serpent Monte Carlo code: status, development and applications in 2013. Ann. Nucl. Energy 82, 142–150 (2014). CrossRefGoogle Scholar
  8. 8.
    K. Wang, Z. Li, D. She et al., RMC—a Monte Carlo code for reactor core analysis. Ann. Nucl. Energy 82, 121–129 (2015). CrossRefGoogle Scholar
  9. 9.
    G. Li, B. Zhang, L. Deng et al., Development of Monte Carlo particle transport code JMCT. High Power Laser Part. Beams 25, 158–162 (2013). (in Chinese) CrossRefGoogle Scholar
  10. 10.
    J.Y. Li, L. Gu, R. Yu et al., Development and validation of burnup-transport code system OMCB for accelerator driven system. Nucl. Eng. Des. 324, 360–371 (2017). CrossRefGoogle Scholar
  11. 11.
    X.Z. Li, H.C. Wu, Y.Q. Zheng et al., Development and application of high-energy nuclear data library for accelerator driven sub-critical system. Atom. Energy Sci. Technol. 49, 371–376 (2015). (in Chinese) CrossRefGoogle Scholar
  12. 12.
    D. Pelowitz. MCNPX User’s Manual 2.7. 0. Los Alamos National Laboratory, Los Alamos, New Mexico (2011)Google Scholar
  13. 13.
    H.Q. Li, Y.W. Yang, The Development of Burn-up Program COUPLE by Combining MCNP and ORIGEN, Conference of Chinese Reactor Physics, Qinshan, China, Augest 8–12 (2004)Google Scholar
  14. 14.
    A.G. Croff, A User’s Manual for the ORIGEN2 Computer Code. ORNL/TM-7175 (1980)Google Scholar
  15. 15.
    P.K. Romano, B. Forget, The OpenMC Monte Carlo particle transport code. Ann. Nucl. Energy 51, 274–281 (2013). CrossRefGoogle Scholar
  16. 16.
    A. Ferrari, P.R. Sala, A. Fasso et al., FLUKA: a multi-particle transport code. Lancet 10(7740), 44–45 (2005). CrossRefGoogle Scholar
  17. 17.
    S. Hong, Y.W. Yang, H.S. Xu et al., Application of Origen2.1 in the decay photon spectrum calculation of spallation products. Chin. Phys. C. 40, 82–87 (2016). CrossRefGoogle Scholar
  18. 18.
    P.K. Romano, N.E. Horelik, B.R. Herman et al., OpenMC: a state-of-the-art Monte Carlo code for research and development. Ann. Nucl. Energy 82, 90–97 (2014). CrossRefGoogle Scholar
  19. 19.
    A. Gul, K.S. Chaudri, R. Khan et al., Development and verification of LOOP: a linkage of ORIGEN2.2 and OpenMC. Ann. Nucl. Energy 99, 321–327 (2016). CrossRefGoogle Scholar
  20. 20.
    M.D. Dehart, M.C. Brady, C.V. Parks, OECD/NEA burnup credit calculational criticality benchmark Phase I-B results. ORNL-6901 (1996)Google Scholar
  21. 21.
    I. Slessarev, A. Tchistiakov, IAEA ADS-benchmark results and analysis (TCM-Meeting, Madrid, Spain, Madrid, 1997)Google Scholar
  22. 22.
    X.F. Jiang, Z. Xie, Transport-burnup code systems and their applications for IAEA ADS benchmark. Ann. Nucl. Energy 31(2), 213–225 (2004). CrossRefGoogle Scholar

Copyright information

© China Science Publishing & Media Ltd. (Science Press), Shanghai Institute of Applied Physics, the Chinese Academy of Sciences, Chinese Nuclear Society and Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Institute of Modern PhysicsChinese Academy of SciencesLanzhouChina
  2. 2.School of Nuclear Science and TechnologyUniversity of Chinese Academy of SciencesBeijingChina

Personalised recommendations