BRIGHT: the three-dimensional X-ray crystal Bragg diffraction code

  • Nan-Shun Huang
  • Kai Li
  • Hai-Xiao DengEmail author


In pursuit of a fully coherent X-ray free-electron laser (FEL), highly reflective Bragg crystals are used and will be used as a highly selective spectral filter in hard X-ray self-seeding FELs and X-ray FEL oscillators (XFELO), respectively. However, currently, when simulating self-seeding and XFELO, the three-dimensional effect of Bragg diffraction is not fully considered. In this paper, we derive a comprehensive solution for the response function of the crystal in Bragg diffraction. A three-dimensional X-ray crystal Bragg diffraction code, named BRIGHT, is introduced, which can be combined with other FEL-related codes, e.g., GENESIS and OPC. Performance and feasibility are assessed using two numerical examples, namely a self-seeding experiment for the linac coherent light source and XFELO options for Shanghai high repetition rate XFEL. The results indicate that BRIGHT provides a new and useful tool for three-dimensional modeling of FEL.


X-ray Bragg diffraction Self-seeding XFELO 


  1. 1.
    C. Bostedt, S. Boutet, D.M. Fritz et al., Linac coherent light source: the first five years. Rev. Mod. Phys. 88, 015007 (2016). CrossRefGoogle Scholar
  2. 2.
    D.A. Deacon, L. Elias, J.M. Madey et al., First operation of a free-electron laser. Phys. Rev. Lett. 38, 892 (1977). CrossRefGoogle Scholar
  3. 3.
    W. Barletta, J. Bisognano, J. Corlett et al., Free electron lasers: present status and future challenges. Nucl. Instrum. Methods Phys. Res. Sect. A 618, 69–96 (2010). CrossRefGoogle Scholar
  4. 4.
    P. Emma, R. Akre, J. Arthur et al., First lasing and operation of an ångstrom-wavelength free-electron laser. Nat. Photonics 4, 641–647 (2010). CrossRefGoogle Scholar
  5. 5.
    T. Ishikawa, H. Aoyagi, T. Asaka et al., A compact x-ray free-electron laser emitting in the sub-ångström region. Nat. Photonics 6, 540 (2012). CrossRefGoogle Scholar
  6. 6.
    H.S. Kang, C.K. Min, H. Heo et al., Hard x-ray free-electron laser with femtosecond-scale timing jitter. Nat. Photonics 11, 708 (2017). CrossRefGoogle Scholar
  7. 7.
    C.J. Milne, T. Schietinger, M. Aiba, Swissfel: the swiss x-ray free electron laser. Appl. Sci. 7, 720 (2017). CrossRefGoogle Scholar
  8. 8.
    M. Altarelli, R. Brinkmann, M. Chergui et al., The European x-ray free-electron laser. Tech. Des. Rep. DESY 97, 1–26 (2006). CrossRefGoogle Scholar
  9. 9.
    R. Bonifacio, C. Pellegrini, L. Narducci, Collective instabilities and high-gain regime in a free electron laser. Opt. Commun. 50, 373–378 (1984). CrossRefGoogle Scholar
  10. 10.
    G. Geloni, V. Kocharyan, E. Saldin, A novel self-seeding scheme for hard x-ray fels. J. Mod. Opt. 58, 1391–1403 (2011). CrossRefGoogle Scholar
  11. 11.
    J. Amann, W. Berg, V. Blank et al., Demonstration of self-seeding in a hard-x-ray free-electron laser. Nat. Photonics 6, 693–698 (2012). CrossRefGoogle Scholar
  12. 12.
    C. Feng, H.X. Deng, Review of fully coherent free-electron lasers. Nucl. Sci. Tech. 29, 160 (2018). CrossRefGoogle Scholar
  13. 13.
    K.J. Kim, Y. Shvyd’ko, S. Reiche, A proposal for an x-ray free-electron laser oscillator with an energy-recovery linac. Phys. Rev. Lett. 100, 244802 (2008). CrossRefGoogle Scholar
  14. 14.
    J. Dai, H.X. Deng, Z. Dai, Proposal for an x-ray free electron laser oscillator with intermediate energy electron beam. Phys. Rev. Lett. 108, 034802 (2012). CrossRefGoogle Scholar
  15. 15.
    M. Billardon, P. Elleaume, J. Ortega et al., First operation of a storage-ring free-electron laser. Phys. Rev. Lett. 51, 1652 (1983). CrossRefGoogle Scholar
  16. 16.
    J. Yan, H. Hao, J. Li et al., Storage ring two-color free-electron laser. Phys. Rev. ST Accel. Beams 19, 070701 (2016). CrossRefGoogle Scholar
  17. 17.
    D. Oepts, A. Van der Meer, P. Van Amersfoort, The free-electron-laser user facility felix. Infrared Phys. Technol. 36, 297–308 (1995). CrossRefGoogle Scholar
  18. 18.
    Y.V. Shvyd’ko, M. Lerche, H.C. Wille et al., X-ray interferometry with microelectronvolt resolution. Phys. Rev. Lett. 90, 013904 (2003). CrossRefGoogle Scholar
  19. 19.
    Y.V. Shvyd’ko, S. Stoupin, A. Cunsolo et al., High-reflectivity high-resolution x-ray crystal optics with diamonds. Nat. Phys. 6, 196–199 (2010). CrossRefGoogle Scholar
  20. 20.
    Y. Shvyd’ko, in Proceedings of the International Committee for Future Accelerators, Feasibility of x-ray cavities for free electron laser oscillators, p. 68 (2013)Google Scholar
  21. 21.
    T. Kolodziej, P. Vodnala, S. Terentyev et al., Diamond drumhead crystals for x-ray optics applications. J. Appl. Crystallogr. 49, 1240–1244 (2016). CrossRefGoogle Scholar
  22. 22.
    M. Song, Q. Zhang, Y. Guo et al., Numerical modeling of thermal loading of diamond crystal in x-ray fel oscillators. Chin. Phys. C 40, 048101 (2016). CrossRefGoogle Scholar
  23. 23.
    K. Li, M. Song, H.H. Deng, Simplified model for fast optimization of a free-electron laser oscillator. Rev. ST Accel. Beams 20, 030702 (2017). CrossRefGoogle Scholar
  24. 24.
    K. Li, H.X. Deng, Gain-guided x-ray free-electron laser oscillator. Appl. Phys. Lett. 113, 061106 (2018). CrossRefGoogle Scholar
  25. 25.
    R. Lindberg, K.J. Kim, Y. Shvyd’ko et al., Performance of the x-ray free-electron laser oscillator with crystal cavity. Phys. Rev. ST Accel. Beams 14, 010701 (2011). CrossRefGoogle Scholar
  26. 26.
    X. Yang, Y. Shvyd’ko, Maximizing spectral flux from self-seeding hard x-ray free electron lasers. Phys. Rev. ST Accel. Beams 16, 120701 (2013). CrossRefGoogle Scholar
  27. 27.
    Y. Shvyd’ko, R. Lindberg, Spatiotemporal response of crystals in x-ray bragg diffraction. Phys. Rev. ST Accel. Beams 15, 100702 (2012). CrossRefGoogle Scholar
  28. 28.
    Y. Shvyd’Ko, X-ray Optics: High-Energy-Resolution Applications, vol. 98 (Springer, Berlin, 2013). CrossRefGoogle Scholar
  29. 29.
    B.W. Batterman, H. Cole, Dynamical diffraction of x rays by perfect crystals. Rev. Mod. Phys. 36, 681 (1964). MathSciNetCrossRefGoogle Scholar
  30. 30.
    A. Authier, International Tables for Crystallography Volume B: Reciprocal Space, Dynamical Theory of X-ray Diffraction (Springer, Berlin, 2006), pp. 534–551. CrossRefGoogle Scholar
  31. 31.
    K. Li, H.X. Deng, Systematic design and three-dimensional simulation of x-ray fel oscillator for shanghai coherent light facility. Nucl. Instrum. Methods Phys. Res. Sect. A 895, 40–47 (2018). CrossRefGoogle Scholar
  32. 32.
  33. 33.
    Z. Zhu, Z. Zhao, D. Wang, et al., Sclf: An 8-gev cw scrf linac-based x-ray fel facility in shanghai, in Proceedings of the FEL2017, Santa Fe, NM, USA, pp. 20–25 (2017).
  34. 34.
    Z.T. Zhao, C. Feng, K.Q. Zhang, Two-stage eehg for coherent hard x-ray generation based on a superconducting linac. Nucl. Sci. Tech. 28, 117 (2017). CrossRefGoogle Scholar
  35. 35.
    Z. Wang, C. Feng, Q. Gu et al., Generation of double pulses at the shanghai soft x-ray free electron laser facility. Nucl. Sci. Tech. 28, 28 (2017). CrossRefGoogle Scholar
  36. 36.
    Y. Chao, C. Jianhui, W. Dong et al., Research on probing the transverse coherence of the self- amplified spontaneous emission of a free-electron laser using near-field heterodyne speckle. Nucl. Tech. 41, 1–7 (2018). (in Chinese) CrossRefGoogle Scholar
  37. 37.
    B. Yu, Z. Wenyan, L. Bo et al., Measurement study of electron bunch length based on the coherent transition radiation. Nucl. Tech. 40, 6–11 (2017). (in Chinese) CrossRefGoogle Scholar

Copyright information

© China Science Publishing & Media Ltd. (Science Press), Shanghai Institute of Applied Physics, the Chinese Academy of Sciences, Chinese Nuclear Society and Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Shanghai Institute of Applied PhysicsChinese Academy of SciencesShanghaiChina
  2. 2.University of Chinese Academy of SciencesBeijingChina
  3. 3.Department of PhysicsThe University of ChicagoChicagoUSA

Personalised recommendations