Advertisement

Application of Monte Carlo method to calculate the effective delayed neutron fraction in molten salt reactor

  • Gui-Feng Zhu
  • Rui YanEmail author
  • Hong-Hua Peng
  • Rui-Min Ji
  • Shi-He Yu
  • Ya-Fen Liu
  • Jian Tian
  • Bo Xu
Article
  • 11 Downloads

Abstract

Delayed neutron loss is an important parameter in the safety analysis of molten salt reactors. In this study, to obtain the effective delayed neutron fraction under flow condition, a delayed neutron precursor transport was implemented in the Monte Carlo code MCNP. The molten-salt reactor experiment (MSRE) model was used to analyze the reliability of this method. The obtained flow losses of reactivity for 235U and 233U fuels in the MSRE are 223 pcm and 100.8 pcm, respectively, which are in good agreement with the experimental values (212 pcm and 100.5 pcm, respectively). Then, six groups of effective delayed neutron fractions in a small molten salt reactor were calculated under different mass flow rates. The flow loss of reactivity at full power operation is approximately 105.6 pcm, which is significantly lower than that of the MSRE due to the longer residence time inside the active core. The sensitivity of the reactivity loss to other factors, such as the residence time inside or outside the core and flow distribution, was evaluated as well. As a conclusion, the sensitivity of the reactivity loss to the residence time inside the core is greater than to other parameters.

Keywords

Monte Carlo Effective delayed neutron fraction Molten salt reactor 

References

  1. 1.
    S. Okajima, T. Sakurai, J.F. Lebrat et al., Summary on international benchmark experiments for effective delayed neutron fraction (βeff). Prog. Nucl. Energy 41(1), 285–301 (2002).  https://doi.org/10.1016/S0149-1970(02)00015-X CrossRefGoogle Scholar
  2. 2.
    G. Rudstam, Ph. Finck, A. Filip, et al., Delayed neutron data for the major actinides. Paper Presented at NEA/WPEC-6, NEA/OECD (Paris, France, 2002)Google Scholar
  3. 3.
    S.C.V.D. Marck, R.K. Meulekamp, Calculating the effective delayed neutron fraction using Monte Carlo techniques. Nucl. Sci. Eng. 152, 142–148 (2006).  https://doi.org/10.1016/j.anucene.2010.10.020 CrossRefGoogle Scholar
  4. 4.
    M. Carta, S. Dulla, V. Peluso et al., Calculation of the Effective Delayed Neutron Fraction by Deterministic and Monte Carlo Methods. Sci. Technol. Nucl. Install. 2011(1687–6075), 109–124 (2011).  https://doi.org/10.1155/2011/584256 CrossRefGoogle Scholar
  5. 5.
    A.I. Kuncoro, S. Pramuditya, Novitrian et al., Delayed Neutrons Effect on Power Reactor with Variation of Fluid Fuel Velocity at MSR Fuji-12. J. Phys. Conf. Ser. 799, 012004 (2017).  https://doi.org/10.1088/1742-6596/799/1/012004 CrossRefGoogle Scholar
  6. 6.
    C. Guerrieri, A. Cammi, L. Luzzi, An approach to the MSR dynamics and stability analysis. Prog. Nucl. Energy 67(8), 56–73 (2003).  https://doi.org/10.1016/j.pnucene.2013.03.020 CrossRefGoogle Scholar
  7. 7.
    I. Pázsit, V. Dykin, R. Sanchez, The point kinetic component of neutron noise in an MSR. Ann. Nucl. Energy 64, 344–352 (2014).  https://doi.org/10.1016/j.anucene.2013.08.004 CrossRefGoogle Scholar
  8. 8.
    M. Aufiero, M. Brovchenko, A. Cammi et al., Calculating the effective delayed neutron fraction in the Molten salt fast reactor: analytical, deterministic and Monte Carlo approaches. Ann. Nucl. Energy 65, 78–90 (2014).  https://doi.org/10.1016/j.anucene.2013.10.015 CrossRefGoogle Scholar
  9. 9.
    A. Cammi, C. Fiorina, C. Guerrieri et al., Dimensional effects in the modelling of MSR dynamics: moving on from simplified schemes of analysis to a multi-physics modelling approach. Nucl. Eng. Des. 246(4), 12–26 (2012).  https://doi.org/10.1016/j.nucengdes.2011.08.002 CrossRefGoogle Scholar
  10. 10.
    M. Zanetti, A. Cammi, C. Fiorina et al., A geometric multiscale modelling approach to the analysis of MSR plant dynamics. Prog. Nucl. Energy 83, 82–98 (2015).  https://doi.org/10.1016/j.pnucene.2015.02.014 CrossRefGoogle Scholar
  11. 11.
    P.N. Haubenreich, Prediction of effective yields of delayed neutrons in MSRE. Oak Ridge Natl Lab (1962).  https://doi.org/10.2172/4754943 CrossRefGoogle Scholar
  12. 12.
    J. Krepel, U. Rohde, U. Grundmann et al., Dynamics of Molten Salt Reactors. Nucl. Technol. 164(1), 34–44 (2006).  https://doi.org/10.13140/RG.2.1.4079.6326 CrossRefGoogle Scholar
  13. 13.
    J. Kópházi, D. Lathouwers, J.L. Kloosterman, Development of a Three-Dimensional Time-Dependent Calculation Scheme for Molten Salt Reactors and Validation of the Measurement Data of the Molten Salt reactor Experiment. Nucl. Sci. Eng. 163(2), 118–131 (2009).  https://doi.org/10.13182/NSE163-118 CrossRefGoogle Scholar
  14. 14.
    K. Nagy, D. Lathouwers, C.G.A. T’Joen et al., Steady-state and dynamic behavior of a moderated molten salt reactor. Ann. Nucl. Energy 64, 365–379 (2014).  https://doi.org/10.1016/j.anucene.2013.08.009 CrossRefGoogle Scholar
  15. 15.
    J. Kophazi, M. Szieberth, S. Feher, et al, MCNP Based Calculation of Reactivity Loss due to Fuel Circulation in Molten Salt Reactors. JAERI-Conf. 2003-019Google Scholar
  16. 16.
    M. Aufiero, P. Rubiolo, M. Fratoni, Monte Carlo/CFD coupling for accurate modeling of the delayed neutron precursors and compressibility effects in molten salt reactors. Paper presented at Transactions of the American Nuclear Society, 2017Google Scholar
  17. 17.
    X-5 Monte Carlo Team. MCNP—a general Monte Carlo N-particle transport code, version 5. Los Alamos Nuclear Laboratory. I, 2-71-2–80 (2005). http://mcnp.lanl.gov/
  18. 18.
    G.F. Zhu, R. Yan, S.H. Yu et al., An application of direct statistical method for kinetics parameters in TMSR-SF1. Nucl. Tech. 41(5), 050603 (2018).  https://doi.org/10.11889/j.0253-3219.2018.hjs.41.050603. (in Chinese) CrossRefGoogle Scholar
  19. 19.
    P.N. Haubenreich, J.R. Engel, B.E. Prince et al., MSRE design and operations report. Part III. Nuclear analysis. Oak Ridge Natl Lab (1964).  https://doi.org/10.2172/4114686 CrossRefGoogle Scholar
  20. 20.
    R.C. Robertson, MSRE design and operations report. Part I. Description of reactor design. Oak Ridge Natl Lab (1965).  https://doi.org/10.2172/4654707 CrossRefGoogle Scholar
  21. 21.
    R.J. Kedl, Fluid dynamic studies of the molten-salt reactor experiment (MSRE) core. Oak Ridge Natl Lab (1970).  https://doi.org/10.2172/4080377 CrossRefGoogle Scholar
  22. 22.
    B.E. Prince, S.J. Ball, J.R. Engel et al., Zero-power physics experiments on the molten-salt reactor experiment. Oak Ridge Natl Lab 1, 1 (1968).  https://doi.org/10.2172/4558029 CrossRefGoogle Scholar

Copyright information

© China Science Publishing & Media Ltd. (Science Press), Shanghai Institute of Applied Physics, the Chinese Academy of Sciences, Chinese Nuclear Society and Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Gui-Feng Zhu
    • 1
  • Rui Yan
    • 1
    Email author
  • Hong-Hua Peng
    • 1
  • Rui-Min Ji
    • 1
  • Shi-He Yu
    • 1
  • Ya-Fen Liu
    • 1
  • Jian Tian
    • 1
  • Bo Xu
    • 1
  1. 1.Shanghai Institute of Applied PhysicsChinese Academy of SciencesShanghaiChina

Personalised recommendations