Advertisement

Synchrotron infrared spectral regions as signatures for foodborne bacterial typing

  • Ya-Di Wang
  • Xue-Ling LiEmail author
  • Jun Hu
  • Jun-Hong LüEmail author
Article
  • 14 Downloads

Abstract

Fourier-transform infrared (FTIR) spectroscopy has emerged as a viable alternative to biochemical and molecular biology techniques for bacterial typing with advantages such as short analysis time, low cost and laboratorial simplicity. In this study, synchrotron radiation-based FTIR (SR-FTIR) spectroscopy with higher spectral quality was successfully applied to type 16 foodborne pathogenic bacterial strains. Combined with principal component analysis (PCA) and hierarchical cluster analysis (HCA), we found that the specific spectral region 1300–1000 cm−1, which reflects the information of phosphate compounds and polysaccharides, can be used as the signature region to cluster the strains into groups similar with genetic taxonomic method. These findings demonstrated that FTIR spectra combined with HCA have a great potential in quickly typing bacteria depending on their biochemical signatures.

Keywords

Synchrotron radiation FTIR Spectral signature Bacterial typing PCA HCA 

Notes

Acknowledgements

We thank the staff from BL01B beamline of National Center for Protein Science Shanghai (NCPSS) at Shanghai Synchrotron Radiation Facility, for assistance during data collection.

Supplementary material

41365_2019_554_MOESM1_ESM.docx (874 kb)
Supplementary material 1 (DOCX 873 kb)

References

  1. 1.
    J.W. Law, N.S. Ab Mutalib, K.G. Chan et al., Rapid methods for the detection of foodborne bacterial pathogens: principles, applications, advantages and limitations. Front. Microbiol. 5, 770 (2014).  https://doi.org/10.3389/fmicb.2014.00770 CrossRefGoogle Scholar
  2. 2.
    C.C. Thompson, L. Chimetto, R.A. Edwards et al., Microbial genomic taxonomy. BMC Genomics 14, 913 (2013).  https://doi.org/10.1186/1471-2164-14-913 CrossRefGoogle Scholar
  3. 3.
    C. Quintelas, E.C. Ferreira, J.A. Lopes et al., An overview of the evolution of infrared spectroscopy applied to bacterial typing. Biotechnol. J. 13, 1700449 (2017).  https://doi.org/10.1002/biot.201700449 CrossRefGoogle Scholar
  4. 4.
    J.P. Harrison, D. Berry, Vibrational spectroscopy for imaging single microbial cells in complex biological samples. Front. Microbiol. 8, 675 (2017).  https://doi.org/10.3389/fmicb.2017.00675 CrossRefGoogle Scholar
  5. 5.
    X. Lu, H.M. Al-Qadiri, M. Lin et al., Application of mid-infrared and Raman spectroscopy to the study of bacteria. Food Bioprocess Technol. 4, 919–935 (2011).  https://doi.org/10.1007/s11947-011-0516-8 CrossRefGoogle Scholar
  6. 6.
    M. Wenning, S. Scherer, Identification of microorganisms by FTIR spectroscopy: perspectives and limitations of the method. Appl. Microbiol. Biotechnol. 97(16), 7111–7120 (2013).  https://doi.org/10.1007/s00253-013-5087-3 CrossRefGoogle Scholar
  7. 7.
    D. Naumann, D. Helm, H. Labischinski, Microbiological characterizations by FT-IR spectroscopy. Nature 351, 81–82 (1991).  https://doi.org/10.1038/351081a0 CrossRefGoogle Scholar
  8. 8.
    D. Helm, H. Labischinski, G. Schallehn et al., Classification and identification of bacteria by Fourier-transform infrared spectroscopy. J. Gen. Microbiol. 137, 69–79 (1991).  https://doi.org/10.1099/00221287-137-1-69 CrossRefGoogle Scholar
  9. 9.
    Y.D. Wang, X.L. Li, Z.X. Liu et al., Discrimination of foodborne pathogenic bacteria using synchrotron FTIR microspectroscopy. Nucl. Sci. Tech. 28, 49 (2017).  https://doi.org/10.1007/s41365-017-0209-8 CrossRefGoogle Scholar
  10. 10.
    S. Passot, J. Gautier, F. Jamme et al., Understanding the cryotolerance of lactic acid bacteria using combined synchrotron infrared and fluorescence microscopies. Analyst 140, 5920–5928 (2015).  https://doi.org/10.1039/c5an00654f CrossRefGoogle Scholar
  11. 11.
    R. Davis, L.J. Mauer, Fourier transform infrared (FT-IR) spectroscopy: a rapid tool for detection and analysis of foodborne pathogenic bacteria. Technol. Educ. Top. Appl. Microbiol. Microb. Biotechnol. 2, 1582–1594 (2010)Google Scholar
  12. 12.
    M. Wenning, F. Breitenwieser, R. Konrad et al., Identification and differentiation of food-related bacteria: a comparison of FTIR spectroscopy and MALDI-TOF mass spectrometry. J. Microbiol. Methods 103, 44–52 (2014).  https://doi.org/10.1016/j.mimet.2014.05.011 CrossRefGoogle Scholar
  13. 13.
    O.E. Preisner, J.C. Menezes, R. Guiomar et al., Discrimination of Salmonella enterica serotypes by Fourier transform infrared spectroscopy. Food Res. Int. 45, 1058–1064 (2012).  https://doi.org/10.1016/j.foodres.2011.02.029 CrossRefGoogle Scholar
  14. 14.
    X.J. Hu, Z.X. Liu, Y.D. Wang et al., Synchrotron FTIR spectroscopy reveals molecular changes in Escherichia coli upon Cu2+ exposure. Nucl. Sci. Tech. 27, 56 (2016).  https://doi.org/10.1007/s41365-016-0067-9 CrossRefGoogle Scholar
  15. 15.
    J.P. Maity, S. Kar, C.M. Lin et al., Identification and discrimination of bacteria using Fourier transform infrared spectroscopy. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 116, 478–484 (2013).  https://doi.org/10.1016/j.saa.2013.07.062 CrossRefGoogle Scholar
  16. 16.
    A. Alvarez-Ordóñez, D.J.M. Mouwen, M. López et al., Fourier transform infrared spectroscopy as a tool to characterize molecular composition and stress response in foodborne pathogenic bacteria. J. Microbiol. Methods 84, 369–378 (2011).  https://doi.org/10.1016/j.mimet.2011.01.009 CrossRefGoogle Scholar
  17. 17.
    M.A. Alruwaili, Attenuated total reflectance-Fourier-transform infrared microspectroscopy a rapid method for microbial strain characterization. Am. J. Agric. Biol. Sci. 8, 135–141 (2013).  https://doi.org/10.3844/ajabssp.2013.135.141 CrossRefGoogle Scholar
  18. 18.
    D.J.M. Mouwen, A. Hörman, H. Korkeala et al., Applying Fourier-transform infrared spectroscopy and chemometrics to the characterization and identification of lactic acid bacteria. Vib. Spectrosc. 56, 193–201 (2011).  https://doi.org/10.1016/j.vibspec.2011.02.008 CrossRefGoogle Scholar
  19. 19.
    D. Ami, P. Mereghetti, S.M. Doglia, Multivariate analysis for Fourier transform infrared spectra of complex biological systems and processes. Multivar. Anal. Manag. Eng. Sci. (2013).  https://doi.org/10.5772/53850 CrossRefGoogle Scholar
  20. 20.
    D. Naumann, Infrared spectroscopy in microbiology. Encyclopedia Anal. Chem. 102, 1–29 (2000).  https://doi.org/10.1002/9780470027318.a0117 CrossRefGoogle Scholar

Copyright information

© China Science Publishing & Media Ltd. (Science Press), Shanghai Institute of Applied Physics, the Chinese Academy of Sciences, Chinese Nuclear Society and Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Division of Physical Biology and CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied PhysicsChinese Academy of Sciences (CAS)ShanghaiChina
  2. 2.University of Chinese Academy of SciencesBeijingChina
  3. 3.Shanghai Center for Bioinformation TechnologyShanghai Industrial Technology InstituteShanghaiChina

Personalised recommendations