Comparison of D-flip-flops and D-latches: influence on SET susceptibility of the clock distribution network

  • Pei-Pei Hao
  • Shu-Ming ChenEmail author


As technology scales down, clock distribution networks (CDNs) in integrated circuits (ICs) are becoming increasingly sensitive to single-event transients (SETs). The SET occurring in the CDN can even lead to failure of the entire circuit system. Understanding the factors that influence the SET sensitivity of the CDN is crucial to achieving radiation hardening of the CDN and realizing the design of highly reliable ICs. In this paper, the influences of different sequential elements (D-flip-flops and D-latches, the two most commonly used sequential elements in modern synchronous digital systems) on the SET susceptibility of the CDN were quantitatively studied. Electrical simulation and heavy ion experiment results reveal that the CDN-SET-induced incorrect latching is much more likely to occur in DFF and DFF-based designs. This can supply guidelines for the design of IC with high reliability.


Clock distribution network D-flip-flop D-latch Reliability Single-event transient Susceptibility 


  1. 1.
    B.M. Gadlage, Comparison of heavy ion and proton induced combinatorial and sequential logic error rates in a deep submicron process. IEEE Trans. Nucl. Sci. 52, 2120–2124 (2005). CrossRefGoogle Scholar
  2. 2.
    D.G. Mavis, P.H. Eaton, SEU and SET modeling and mitigation in deep submicron technologies. in IEEE IRPS, (Phoenix, AZ, June 2007), 293–305.
  3. 3.
    N.N. Mahatme, S. Jagannathan, T.D. Loveless et al., Comparison of combinational and sequential error rates for a deep submicron process. IEEE Trans. Nucl. Sci. 58, 2719–2725 (2011). CrossRefGoogle Scholar
  4. 4.
    N.N. Mahatme, I. Chatterjee, B.L. Bhuva, et al., Analysis of soft error rates in combinational and sequential logic and implications of hardening for advanced technologies. in IEEE IRPS, (Anaheim, CA, May 2010), 1031–1035.
  5. 5.
    S. Chellappa, L.T. Clark, K.E. Holbert, A 90-nm radiation hardened clock spine. IEEE Trans. Nucl. Sci. 59, 1020–1026 (2012). CrossRefGoogle Scholar
  6. 6.
    R. Chipana, F.L. Kastensmidt, SET susceptibility analysis of clock tree and clock mesh topologies. in IEEE ISVLSI, Tampa, FL, 559–564 July 2014.
  7. 7.
    N. Seifert, P. Shipley, M.D. Pant, et al., Radiation-induced clock jitter and race. in IEEE IRPS, (San Jose, CA, April 2005), 215–222.
  8. 8.
    A. Mallajosyula, P. Zarkesh-Ha, A robust single event upset hardened clock distribution network. in IEEE IIRW, S. Lake Tahoe, CA, 121–124 October 2008.
  9. 9.
    R. Dash, R. Garg, S.P. Khatri, et al., SEU hardened clock regeneration circuits. in IEEE ISQED, (San Jose, CA, March 2009), 806–813.
  10. 10.
    N. Weste, D.M. Harris, CMOS VLSI Design: A Circuits and Systems Perspective, 4th edn. (Addison-Wesley Publishing Company, New York, 2010), p. 376Google Scholar
  11. 11.
    S. Heo, R. Krashinsky, K. Asanovic, Activity-sensitive flip-flop and latch selection for reduced energy. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 15, 1060–1064 (2007).
  12. 12.
    B.S. Kong, S.S. Kim, Y.H. Jun, Conditional-capture flip-flop for statistical power reduction. IEEE J. Solid-State Circuits. 36, 1263–1271 (2001). CrossRefGoogle Scholar
  13. 13.
    S. Dinesh, C. Ananth, Area power and speed optimized serial type daisy chain memory using modified CPG with SSASPL. in ICCICCT, (Kumaracoil, India, December 2015), 344–349.
  14. 14.
    B.D. Yang, Low-power and area-efficient shift register using pulsed latches. IEEE Trans. Circuits Syst. I, Reg. Papers. 62, 1564–1571 (2015).
  15. 15.
    T.Y. Wu, Y.L. Lin, Storage optimization by replacing some flip-flops with latches. in EURO-DAC, (Geneva, Switzerland, September 1996), 296–301.
  16. 16.
    T. Dua, K.G. Sharma, T. Sharma, An efficient novel latch design for sequential applications. in ICRAIE, Jaipur, India, 1–4 May 2014.
  17. 17.
    P.P. Hao, S.M. Chen, Single-event transient susceptibility analysis and evaluation methodology for clock distribution network in the integrated circuit working in real time. IEEE Trans. Device Mater. Rel. 17, 539–548 (2017). MathSciNetCrossRefGoogle Scholar
  18. 18.
    Q. Zhou, K. Mohanram, Gate sizing to radiation harden combinational logic. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 25, 155–166 (2006).
  19. 19.
    A. Dharchoudhury, S.M. Kang, H. Cha, et al., Fast timing simulation of transient fault in digital circuits. in IEEE/ACM ICAD, (San Jose, CA, November 1994), 719–726.
  20. 20.
    A.B. Dolores, H.R. William, Z.W. Ian et al., Modeling of single event transients with dual double-exponential current source: implications for logic cell characterization. IEEE Trans. Nucl. Sci. 62, 1540–1549 (2015). CrossRefGoogle Scholar
  21. 21.
    P.P. Hao, S.M. Chen, Z.Y. Wu et al., On-chip relative single-event transient/single-event upset susceptibility test circuit for integrated circuits working in real time. IEEE Trans. Nucl. Sci. 65, 376–381 (2018). CrossRefGoogle Scholar
  22. 22.
    D.L. Hansen, E.J. Miller, A. Kleinosowski et al., Clock, flip-flop, and combinatorial logic contributions to the SEU cross section in 90 nm ASIC technology. IEEE Trans. Nucl. Sci. 56, 3542–3550 (2009). CrossRefGoogle Scholar
  23. 23.
    T. Calin, R. Velazco, M. Nicolaidis, et al., Topology-related upset mechanisms in design hardened storage cells. in IEEE RADECS, (Cannes, France, September 1997), 484–488.
  24. 24.
    D.G. Mavis, P.H. Eaton, Soft error rate mitigation techniques for modern microcircuits. in IEEE IRPS, (Dallas, TX, April. 2002), 216–225.
  25. 25.
    J.E. Knudsen, L.T. Clark, An area and power efficient radiation hardened by design flip-flop. IEEE Trans. Nucl. Sci. 53, 3392–3399 (2006). CrossRefGoogle Scholar
  26. 26.
    B. Narasimham, B.L. Bhuva, R.D. Schrimpf et al., Characterization of digital single event transient pulse-widths in 130-nm and 90-nm CMOS technologies. IEEE Trans. Nucl. Sci. 54, 2506–2511 (2007). CrossRefGoogle Scholar
  27. 27.
    P.C. Huang, S.M. Chen, J.J. Chen et al., A novel uniform vertical inverter chains (UniVIC) SEMT test structure for heavy-ion-induced charge sharing measurement. IEEE Trans. Nucl. Sci. 62, 3330–3338 (2015). CrossRefGoogle Scholar
  28. 28.
    S.M. Chen, Y.K. Du, B.W. Liu et al., Calculating the soft error vulnerabilities of combinational circuits by re-considering the sensitive area. IEEE Trans. Nucl. Sci. 61, 646–653 (2014). CrossRefGoogle Scholar
  29. 29.
    C.H. Chen, P. Knag, Z.Y. Zhang, Characterization of heavy-ion-induced single-event effects in 65 nm bulk CMOS ASIC test chip. IEEE Trans. Nucl. Sci. 61, 2694–2701 (2014). CrossRefGoogle Scholar
  30. 30.
    T.D. Loveless, J.S. Kauppila, S. Jagannathan et al., On-chip measurement of single-event transients in a 45 nm silicon-on-insulator technology. IEEE Trans. Nucl. Sci. 59, 2748–2755 (2012). CrossRefGoogle Scholar
  31. 31.
    J.S. Kauppila, T.D. Haeffner, D.R. Ball et al., Circuit-level layout-aware single-event sensitive-area analysis of 40-nm bulk CMOS flip-flops using compact modeling. IEEE Trans. Nucl. Sci. 58, 2680–2686 (2011). CrossRefGoogle Scholar

Copyright information

© China Science Publishing & Media Ltd. (Science Press), Shanghai Institute of Applied Physics, the Chinese Academy of Sciences, Chinese Nuclear Society and Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.College of ComputerNational University of Defense TechnologyChangshaChina

Personalised recommendations