Advertisement

Temperature dependence of CsI:Tl coupled to a PIN photodiode and a silicon photomultiplier

  • Yu SunEmail author
  • Zhi-Yu Sun
  • Yu-Hong Yu
  • Ruo-Fu Chen
  • Shu-Weng Tang
  • Fang Fang
  • Duo Yan
  • Qiang Hu
  • Ke Yue
  • Shi-Tao Wang
  • Xue Heng Zhang
  • Yong-Jie Zhang
  • Jun-Lin Chen
  • Ya-Zhou Sun
  • Ze-Hui Cheng
  • Bi-Tao Hu
Article
  • 13 Downloads

Abstract

With the aim of simulating the harsh temperature condition of space, a thallium-activated cesium iodide crystal (CsI:Tl) detector readout with a PIN photodiode (CsI:Tl(PD)) and with a silicon photomultiplier (CsI:Tl(SiPM)) is investigated over a temperature range from − 40 to 40 °C. With the increase in temperature, the output signal increases by ~ 24% with CsI:Tl(PD) and decreases by ~ 69% with CsI:Tl(SiPM). To reduce the effect of temperature in outer space, a method of bias voltage compensation is adopted for CsI:Tl(SiPM). Our study demonstrates that after correcting the temperature the variation in the analog-to-digital converter’s amplitude is < 3%.

Keywords

CsI:Tl SiPM PD Temperature dependence Correction method 

Notes

Acknowledgements

The authors would like to thank Dipika Patal for language revision and helpful suggestions.

References

  1. 1.
    F. Giovacchini, Performance in space of the AMS-02 RICH detector. Nucl. Instrum. Methods A 766, 57 (2014).  https://doi.org/10.1016/j.nima.2014.04.036 CrossRefGoogle Scholar
  2. 2.
    M. Casolino, V. Bidoli, E. De Grandis et al., Study of the radiation environment in MIR space station with SILEYE-2 experiment. Adv. Space Res. 31(1), 135–140 (2003).  https://doi.org/10.1016/S0273-1177(02)00880-3 CrossRefGoogle Scholar
  3. 3.
    G.D. Badhwar, P.M. O’Neill, Response of silicon-based linear energy transfer spectrometers: implication for radiation risk assessment in space flights. Nucl. Instrum. Methods A 466, 464 (2001).  https://doi.org/10.1016/S0168-9002(01)00285-6 CrossRefGoogle Scholar
  4. 4.
    B. Ritter, K. Marsalek, T. Berger et al., A small active dosimeter for applications in space. Nucl. Instrum. Methods A 748, 61 (2014).  https://doi.org/10.1016/j.nima.2014.02.030 CrossRefGoogle Scholar
  5. 5.
    E. Frlem, D. Pocanic, K.A. Assamagan et al., Design, commissioning and performance of the PIBETA detector at PSI. Nucl. Instrum. Methods A 526, 300 (2004).  https://doi.org/10.1016/j.nima.2004.03.137 CrossRefGoogle Scholar
  6. 6.
    Q.Y. Wei, T.P. Xu, T.T. Dai et al., Development of a compact DOI-TOF detector module for high-performance PET systems. Nucl. Sci. Tech. 28, 43 (2017).  https://doi.org/10.1007/s41365-017-0202-2 CrossRefGoogle Scholar
  7. 7.
    B. Aubert, A. Bazan, A. Boucham et al., The BABAR detector. Nucl. Instrum. Methods A 479, 1 (2002).  https://doi.org/10.1016/S0168-9002(01)02012-5 CrossRefGoogle Scholar
  8. 8.
    N. Dinu, C. Bazin, V. Chaumat et al., Temperature and bias voltage dependence of the MPPC detectors, in Nuclear Science Symposium & Medical Imaging Conference (IEEE, 2010), p. 215.  https://doi.org/10.1109/NSSMIC.2010.5873750
  9. 9.
    R. Shukla, P. Rakshe, S. Lokhandwala et al., A survey of power supply techniques for silicon photo-multiplier biasing. Int. J. Eng. Res. Gen. Sci. 2, 599 (2014)Google Scholar
  10. 10.
    R.A. Shukla, V.G. Achanta, S.R. Dugad et al., Multi-channel programmable power supply with temperature compensation for silicon sensors. Rev. Sci. Instrum. 87, 015114 (2016).  https://doi.org/10.1063/1.4940424 CrossRefGoogle Scholar
  11. 11.
    M. Moszynski, P. CARLSON, Temperature dependence of CsI(Tl) scintillation yield for cosmic muons 5 and 1.25 MeV γ-rays. Nucl. Instrum. Methods A 568, 739 (2006).  https://doi.org/10.1016/0168-9002(89)91234-5 CrossRefGoogle Scholar
  12. 12.
    J. Valentine, D. wehe, G. knoll, et al., Temperature dependence of absolute CsI(Tl) scintillation yield, in Nuclear Science Symposium & Medical Imaging Conference (IEEE, 1991). p. 176.  https://doi.org/10.1109/NSSMIC.1991.258897
  13. 13.
    Z.M. Wang, Y.H. Yu, Z.Y. Sun et al., Temperature dependence of the plastic scintillator detector for DAMPE. Chin. Phys. C 41, 016001 (2017).  https://doi.org/10.1088/1674-1137/41/1/016001 CrossRefGoogle Scholar
  14. 14.
    Hamamatsu Si PIN photodiode. S3590-08/-09/-18/-19 Manual. http://www.hamamatsu.com.cn/UserFiles/DownFile/Product/s3590-08_etc_kpin1052e09.pdf. Accessed 1 Sept 2018
  15. 15.
    Hamamatsu MPPC S13360 series Manual. http://www.hamamatsu.com.cn/UserFiles/DownFile/Product/s13360_series_kapd1052e.pdf. Accessed 1 Sept 2018
  16. 16.
    CAEN V785N Manual. https://www.caen.it/download/?fil ter=V785N. Accessed 1 Sept 2018
  17. 17.
    ORTEC 142A/B/C Preamplifiers Manual. https://www.ortec-online.com/-/media/ametekortec/manuals/142abc-mnl.pdf. Accessed 1 Sept 2018
  18. 18.
    ORTEC 572A Amplifier Manual. https://www.ortec-online.com/-/media/ametekortec/manuals/572a-mnl.pdf. Accessed 1 Sept 2018
  19. 19.
    N. Dinu, Silicon photomultipliers (SiPM), in Photodetectors: Materials, Devices and Applications, ed. by B. Nabet (Elsevier, Hoboken, 2016), pp. 255–294.  https://doi.org/10.1016/B978-1-78242-445-1.00008-7 CrossRefGoogle Scholar
  20. 20.
    J.D. Valentine, W.W. Moses, S.E. Derenzo et al., Temperature dependence of CSl(TI) gamma-ray excited scintillation characteristics. Nucl. Instrum. Methods A 325, 147 (1993).  https://doi.org/10.1016/0168-9002(93)91015-F CrossRefGoogle Scholar
  21. 21.
    M. Grodzicka, M. Moszynski, T. Szczesniak et al., Energy resolution of small scintillation detectors with SiPM light readout. J. Instrum. 8, P02017 (2013).  https://doi.org/10.1088/1748-0221/8/02/P02017 CrossRefGoogle Scholar
  22. 22.
    T. Carter, A.J. Bird, A.J. Dean et al., The optimisation of CsI(T1)-PIN photodiode detectors. Nucl. Instrum. Methods A 348, 567 (1994).  https://doi.org/10.1016/0168-9002(94)90802-8 CrossRefGoogle Scholar
  23. 23.
    H. Grassmann, H.G. Moser, H. Dietl et al., Improvements in photodiode readout for small CsI(Tl) crystals. Nucl. Instrum. Methods A 234, 122–124 (1984).  https://doi.org/10.1016/0168-9002(85)90816-2 CrossRefGoogle Scholar
  24. 24.
    M. Grodzicka, M. Moszynski, T. Szczesniak et al., Characterization of CsI:Tl at a wide temperature range (\(-\) 40 to 20). Nucl. Instrum. Methods A 707, 73 (2013).  https://doi.org/10.1016/j.nima.2012.12.111 CrossRefGoogle Scholar
  25. 25.
    M. Grodzicka, M. Moszynski, T. Szczesniak et al., MPPC array in the readout of CsI:Tl, LSO:Ce:Ca, LaBr\(_3\):Ce, and BGO Scintillators. IEEE Trans. Nucl. Sci. 59, 6 (2012).  https://doi.org/10.1109/TNS.2012.2215343 CrossRefGoogle Scholar
  26. 26.
    M. Grodzicka, M. Moszynski, T. Szczesniak et al., Characterization of 2*2 ch MPPC array over a wide temperature range (\(-\) 20 to 21). J. Instrum. 8, P07007 (2013).  https://doi.org/10.1088/1748-0221/8/07/P07007 CrossRefGoogle Scholar
  27. 27.
    U. Kilgus, R. Kotthaus, E. Lange et al., Prospects of CsI(Tl)-photodiode detectors for low-level spectroscopy. Nucl. Instrum. Methods A 297, 425 (1990).  https://doi.org/10.1016/0168-9002(90)91325-6 CrossRefGoogle Scholar
  28. 28.
    F. Licciulli, C. Marzocca, An active compensation system for the temperature dependence of SiPM gain. IEEE Trans. Nucl. Sci. 62, 228–235 (2015).  https://doi.org/10.1109/TNS.2015.2388580 CrossRefGoogle Scholar
  29. 29.
    B.G. Lowe, R.A. Sareen, A measurement of the electron-hole pair creation energy and the Fano factor in silicon for 5.9 keV X-rays and their temperature dependence in the range 80–270 K. Nucl. Instrum. Methods A 576, 367 (2007).  https://doi.org/10.1016/j.nima.2007.03.020 CrossRefGoogle Scholar

Copyright information

© China Science Publishing & Media Ltd. (Science Press), Shanghai Institute of Applied Physics, the Chinese Academy of Sciences, Chinese Nuclear Society and Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Yu Sun
    • 1
    • 2
    • 3
    Email author
  • Zhi-Yu Sun
    • 1
  • Yu-Hong Yu
    • 1
  • Ruo-Fu Chen
    • 1
  • Shu-Weng Tang
    • 1
  • Fang Fang
    • 1
  • Duo Yan
    • 1
  • Qiang Hu
    • 1
  • Ke Yue
    • 1
  • Shi-Tao Wang
    • 1
  • Xue Heng Zhang
    • 1
  • Yong-Jie Zhang
    • 1
  • Jun-Lin Chen
    • 1
  • Ya-Zhou Sun
    • 1
    • 2
    • 3
  • Ze-Hui Cheng
    • 2
  • Bi-Tao Hu
    • 2
  1. 1.Institute of Modern PhysicsChinese Academy of SciencesLanzhouChina
  2. 2.Lanzhou UniversityLanzhouChina
  3. 3.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations