Separation of hafnium from zirconium in hydrochloric acid solution with di(2-ethylhexyl)phosphoric acid by solvent extraction

  • Tao Yang
  • Guo-Xin SunEmail author
  • Yuan QianEmail author
  • Ji-Fei Ma
  • Yu-Lan Li


The preparation of nuclear-grade zirconium and hafnium is very important for nuclear power. The separation of hafnium from zirconium in a hydrochloric acid solution by solvent extraction was investigated with di(2-ethylhexyl)phosphoric acid (D2EHPA). The effects of hydrochloric acid concentration, extractant concentration, diluents, and temperature on the distribution coefficient of hafnium and zirconium were studied. The species extracted were ZrOA2·2HA and HfOA2·2HA. In this process, the separation factors varied with different diluents and followed the order octane > hexane > toluene > chloroform. A high separation factor value of 4.16 was obtained under the conditions of a solution containing 0.05 mol/L HCl and 0.01 mol/L D2EHPA for the separation of hafnium from zirconium. The extraction reaction was endothermic.


Zirconium Hafnium D2EHPA Solvent extraction Separation 


  1. 1.
    Z. Xu, L. Wang, M. Wu, Y. Xu et al., Separation of zirconium and hafnium by solvent extraction using mixture of DIBK and P204. Hydrometallurgy 165, 275–281 (2016). CrossRefGoogle Scholar
  2. 2.
    Z.-G. Xu, L. Wang, Y.-K. Wu et al., Solvent extraction of hafnium from thiocyanic acid medium in DIBK-TBP mixed system. Trans Nonferr. Met. Soc. 22, 1760–1765 (2012). CrossRefGoogle Scholar
  3. 3.
    M. Smolik, A. Jakóbik-Kolon, M. Porański, Separation of zirconium and hafnium using Diphonix® chelating ion-exchange resin. Hydrometallurgy 95, 350–353 (2009). CrossRefGoogle Scholar
  4. 4.
    L.Y. Wang, M.S. Lee, Development of a separation process for the selective extraction of hafnium(IV) over zirconium(IV) from sulfuric acid solutions by using D2EHPA. Hydrometallurgy 160, 12–17 (2016). CrossRefGoogle Scholar
  5. 5.
    L.Y. Wang, M.S. Lee, A review on the aqueous chemistry of Zr(IV) and Hf(IV) and their separation by solvent extraction. J. Ind. Eng. Chem. 39, 1–9 (2016). CrossRefGoogle Scholar
  6. 6.
    B. Gupta, P. Malik, N. Mudhar, extraction and recovery of zirconium from zircon using Cyanex 923. Solv. Extr. Ion Exch. 23, 345–357 (2005). CrossRefGoogle Scholar
  7. 7.
    L.Y. Wang, H.Y. Lee, M.S. Lee, Solvent extractive separation of zirconium and hafnium from hydrochloric acid solutions by organophosphorous extractants and their mixtures with other types of extractants. Chem. Eng. Commun. 202, 1289–1295 (2015). CrossRefGoogle Scholar
  8. 8.
    M.S. Lee, R. Banda, S.H. Min, Separation of Hf(IV)–Zr(IV) in H2SO4 solutions using solvent extraction with D2EHPA or Cyanex 272 at different reagent and metal ion concentrations. Hydrometallurgy 152, 84–90 (2015). CrossRefGoogle Scholar
  9. 9.
    L.Y. Wang, M.S. Lee, Separation of Zr and Hf from sulfuric acid solutions with amine-based extractants by solvent extraction. Sep. Purif. Technol. 142, 83–89 (2015). CrossRefGoogle Scholar
  10. 10.
    R. Banda, M.S. Lee, Solvent extraction for the separation of Zr and Hf from aqueous solutions. Sep. Purif. Rev. 44, 199–215 (2015). CrossRefGoogle Scholar
  11. 11.
    M. Aliakbari, K. Saberyan, M. Noaparast et al., Separation of hafnium and zirconium using TBP modified ferromagnetic nanoparticles: effects of acid and metals concentrations. Hydrometallurgy 146, 72–75 (2014). CrossRefGoogle Scholar
  12. 12.
    M. Taghizadeh, M. Ghanadi, E. Zolfonoun, Separation of zirconium and hafnium by solvent extraction using mixture of TBP and Cyanex 923. J. Nucl. Mater. 412, 334–337 (2011). CrossRefGoogle Scholar
  13. 13.
    G. Pandey, S. Mukhopadhyay, A.U. Renjith et al., Recovery of Hf and Zr from slurry waste of zirconium purification plant using solvent extraction. Hydrometallurgy 163, 61–68 (2016). CrossRefGoogle Scholar
  14. 14.
    B.R. Reddy, J.R. Kumar, Studies on liquid–liquid extraction of tetravalent hafnium from weakly hydrochloric acid solutions by LIX 84-IC. Sep. Purif. Technol. 42, 169–174 (2005). CrossRefGoogle Scholar
  15. 15.
    J.S. Gaudh, V.M. Shinde, Analytical separation of titanium(IV), zirconium(IV) and hafnium(IV) using tris(2-ethylhexyl)phosphate as an extractant. Anal. Lett. 28, 1107–1125 (1995). CrossRefGoogle Scholar
  16. 16.
    J. Kumar, B. Reddy, J. Koduru et al., Liquid-liquid extraction of tetravalent hafnium from acidic chloride solutions using bis(2,4,4-trimethylpentyl) dithiophosphinic acid (Cyanex 301). Sep. Sci. Technol. 42, 865–877 (2007). CrossRefGoogle Scholar
  17. 17.
    R. Banda, H.Y. Lee, M.S. Lee, Separation of Zr from Hf in hydrochloric acid solution using amine-based extractants. Ind. Eng. Chem. Res. 51, 9652–9660 (2012). CrossRefGoogle Scholar
  18. 18.
    S. Chen, Z. Zhang, S. Kuang et al., Separation of zirconium from hafnium in sulfate medium using solvent extraction with a new reagent BEAP. Hydrometallurgy 169, 607–611 (2017). CrossRefGoogle Scholar
  19. 19.
    R. Banda, H.Y. Lee, M.S. Lee, Separation of Zr from Hf in acidic chloride solutions by using TOPO and its mixture with other extractants. J. Radioanal. Nucl. Ch. 298, 259–264 (2013). CrossRefGoogle Scholar
  20. 20.
    B. Ramachandra Reddy, J. Rajesh Kumar, K. Phani Raja et al., Solvent extraction of Hf(IV) from acidic chloride solutions using Cyanex 302. Miner. Eng. 17, 939–942 (2004). CrossRefGoogle Scholar
  21. 21.
    R.G. Pearson, Hard and soft acid and bases. J. Am. Chem. Soc. 85, 3533–3539 (1963). CrossRefGoogle Scholar
  22. 22.
    A. Boussaha, J.C. Abbe, A. Haessler, Influence of the acidity on the polymerisation of Hf(IV) in aqueous solutions of HfOCl2 observed by the time differential perturbed angular correlation technique. J. Inorg. Nucl. Chem. 39, 853–855 (1977). CrossRefGoogle Scholar
  23. 23.
    R.K. Biswas, M.A. Hayat, Solvent extraction of zirconium(IV) from chloride media by D2EHPA in kerosene. Hydrometallurgy 63, 149–158 (2002). CrossRefGoogle Scholar
  24. 24.
    L.Y. Wang, M.S. Lee, Separation of zirconium and hafnium from nitric acid solutions with LIX 63, PC 88A and their mixture by solvent extraction. Hydrometallurgy 150, 153–160 (2014). CrossRefGoogle Scholar
  25. 25.
    H. Lee, S. Gyu Kim, J. Kee Oh, Stoichiometric relation for extraction of zirconium and hafnium from acidic chloride solutions with Versatic Acid 10. Hydrometallurgy 73, 91–97 (2004). CrossRefGoogle Scholar
  26. 26.
    M. Taghizadeh, R. Ghasemzadeh, S.N. Ashrafizadeh et al., Determination of optimum process conditions for the extraction and separation of zirconium and hafnium by solvent extraction. Hydrometallurgy 90, 115–120 (2008). CrossRefGoogle Scholar
  27. 27.
    B.V. Pershina, D. Trubert, C. Le Naour et al., Theoretical predictions of hydrolysis and complex formation of group-4 elements Zr, Hf and Rf in HF and HCl solutions. Radiochim. Acta 90, 869–877 (2002). CrossRefGoogle Scholar
  28. 28.
    B. Reddy, R.K. Jyothi, A. Reddy, Solvent extraction of tetravalent hafnium from acidic chloride solutions using 2-ethyl hexyl phosphonic acid mono-2-ethyl hexyl ester (PC-88A). Miner. Eng. 17, 553–556 (2004). CrossRefGoogle Scholar
  29. 29.
    X.-J. Peng, Y. Cui, J.-F. Ma et al., Extraction of lanthanide ions with N, N, N′, N′-tetrabutyl-3-oxa-diglycolamide from nitric acid media. Nucl. Sci. Tech. 28, 87 (2017). CrossRefGoogle Scholar

Copyright information

© China Science Publishing & Media Ltd. (Science Press), Shanghai Institute of Applied Physics, the Chinese Academy of Sciences, Chinese Nuclear Society and Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.School of Chemistry and Chemical EngineeringUniversity of JinanJinanChina
  2. 2.Shanghai Institute of Applied PhysicsChinese Academy of SciencesShanghaiChina

Personalised recommendations