Advertisement

Simulation study of energy resolution with changing pixel size for radon monitor based on Topmetal-\({II}^-\) TPC

  • Meng-Yao HuangEmail author
  • Hua Pei
  • Xiang-Ming Sun
  • Shu-Guang Zou
Article

Abstract

In this paper, we study how pixel size influences energy resolution for a proposed pixelated detector—a high sensitivity, low cost, and real-time radon monitor based on a Topmetal-\({II}^-\) time projection chamber (TPC). This monitor was designed to improve spatial resolution for detecting radon alpha particles using Topmetal-\({II}^-\) sensors assembled by a 0.35 μm CMOS integrated circuit process. Owing to concerns that small pixel size might have the side effect of worsening energy resolution due to lower signal-to-noise ratio, a Geant4-based simulation was used to investigate the dependence of energy resolution on pixel sizes ranging from 60 to 600 μm. A non-monotonic trend in this region shows the combined effect of pixel size and threshold on pixels, analyzed by introducing an empirical expression. Pixel noise contributes 50 keV full-width at half-maximum energy resolution for 400 μm pixel size at 1–4\(\sigma\) threshold that is comparable to the energy resolution caused by energy fluctuations in the TPC ionization process (\(\sim \,20\) keV). The total energy resolution after combining both factors is estimated to be 54 keV for a pixel size of 400 μm at 1–4\(\sigma\) threshold. The analysis presented in this paper would help choosing suitable pixel size for future pixelated detectors.

Keywords

Geant4 Energy resolution Pixel size Radon monitor Topmetal 

References

  1. 1.
    World Health Organization, WHO Handbook on Indoor Radon: A Public Health Perspective (WHO Press, Geneva, 2009). http://www.who.int/ionizing_radiation/env/9789241547673/en/. Accessed 23 Aug 2018
  2. 2.
    R.C. Bruno, Sources of indoor radon in houses: a review. J. Air Pollut. Control Assoc. 33(2), 105–109 (1983).  https://doi.org/10.1080/00022470.1983.10465550 CrossRefGoogle Scholar
  3. 3.
    F. Bochicchio, J.P. McLaughling, S. Piermattei, Report No 15: radon in indoor air (EUR 16123 EN), in European Collaborative Action: Indoor Air Quality and Its Impact on Man (formerly Cost Project 613)—Environment and Quality of Life (European Commission, Luxembourg, 1995). http://www.aivc.org/resource/eca-15-radon-indoor-air?collection=34251. Accessed 23 Aug 2018
  4. 4.
    M. Baskaran, Radon measurement techniques, in Radon: A Tracer for Geological, Geophysical and Geochemical Studies Springer Geochemistry (Springer, Cham, 2016), pp. 15–35.  https://doi.org/10.1007/978-3-319-21329-3_2
  5. 5.
    A. Bosi, L. Bidinelli, D. Saguatti et al., Performance of a radon sensor based on a BJT detector on high-resistivity silicon, in 2012 IEEE Nuclear Science Symposium and Medical Imaging Conference Record (NSS/MIC), Anaheim, CA (2012), pp. 266–268.  https://doi.org/10.1109/NSSMIC.2012.6551105
  6. 6.
    P. Ashokkumar, B.K. Sahoo, A. Raman et al., Development and characterisation of a silicon PIN diode array based highly sensitive portable continuous radon monitor. J. Radiol. Prot. 34, 149–160 (2014).  https://doi.org/10.1088/0952-4746/34/1/149 CrossRefGoogle Scholar
  7. 7.
    J. Sand, S. Ihantola, K. Peräjärvi et al., Optical detection of radon decay in air. Sci. Rep. 6, 21532 (2016).  https://doi.org/10.1038/srep21532 CrossRefGoogle Scholar
  8. 8.
    S. Higueret, D. Husson, T.D. Le et al., Electronic radon monitoring with the CMOS System-on-Chip AlphaRad. Nucl. Instrum. Meth. A 584(2–3), 412–417 (2008).  https://doi.org/10.1016/j.nima.2007.10.034 CrossRefGoogle Scholar
  9. 9.
    A.J.H. Ross, R.H. Griffin, N.G. Tarr, Radon monitor using alpha-detecting CMOS IC, in 2016 IEEE Sensors Applications Symposium (SAS), Catania (2016), pp. 1–5.  https://doi.org/10.1109/SAS.2016.7479856
  10. 10.
    A. Nachab, D. Husson, A. Nourreddine et al., First measurement of \(^{222}\text{ Rn }\) activity with a CMOS active pixel sensor. Nucl. Instrum. Methods Phys. Res. B 225(3), 418–422 (2004).  https://doi.org/10.1016/j.nimb.2004.05.017 CrossRefGoogle Scholar
  11. 11.
    M. Caresana, L. Garlati, F. Murtas et al., Real-time measurements of radon activity with the Timepix-based RADONLITE and RADONPIX detectors. J. Instrum. 9(11), P11023 (2014)CrossRefGoogle Scholar
  12. 12.
    B.D. McNally, S. Coleman, J.T. Harris, et al., Improving the limits of detection of low background alpha emission measurements, in AIP Conference Proceedings, vol. 1921, no. 1 (AIP Publishing, 2018), p. 30001.  https://doi.org/10.1063/1.5018988
  13. 13.
    M. An, C. Chen, C. Gao et al., A low-noise CMOS pixel direct charge sensor, Topmetal-\({II}^-\). Nucl. Instrum. Meth. A 810, 144–150 (2016).  https://doi.org/10.1016/j.nima.2015.11.153 CrossRefGoogle Scholar
  14. 14.
    S. Agostinelli, J. Allison, K. Amako et al., Geant4—a simulation toolkit. Nucl. Instrum. Meth. A 506, 250–303 (2003).  https://doi.org/10.1016/S0168-9002(03)01368-8 CrossRefGoogle Scholar
  15. 15.
    G. Charpak, P. Benaben, P. Breuil, et al., Performance of wire-type Rn detectors operated with gas gain in ambient air in view of its possible application to early earthquake predictions (2010). arXiv:1002.4732
  16. 16.
    G. Boissonnat, J.M. Fontbonne, J. Colin, et al., Measurement of ion and electron drift velocity and electronic attachment in air for ionization chambers (2016). arXiv: 1609.0374. Accessed 23 Aug 2018
  17. 17.
    S. Biagi, Magboltz—Transport of Electrons in Gas Mixtures. CERN Program Library (2000)Google Scholar
  18. 18.
    C. Gao, G. Huang, X. Sun, Topmetal-\({II}^-\): a direct charge sensor for high energy physics and imaging applications. J. Instrum. 11(1), C01053 (2016)CrossRefGoogle Scholar
  19. 19.
    T.J. O’Shea, J. Corgan, T.C. Clancy, Convolutional radio modulation recognition networks, in Engineering Applications of Neural Networks, vol. 629, EANN 2016. Communications in Computer and Information Science, ed. by C. Jayne, L. Iliadis (Springer, Cham, 2016), pp. 213–226.  https://doi.org/10.1007/978-3-319-44188-7_16 CrossRefGoogle Scholar
  20. 20.
    Y. Zhu, Q. Ouyang, Y. Mao, A deep convolutional neural network approach to single-particle recognition in cryo-electron microscopy. BMC Bioinform. 18, 348 (2017).  https://doi.org/10.1186/s12859-017-1757-y CrossRefGoogle Scholar
  21. 21.
    R. Li, T. Zeng, H. Peng et al., Deep learning segmentation of optical microscopy images improves 3-D neuron reconstruction. IEEE Trans. Med. Imaging 36, 1533–1541 (2017).  https://doi.org/10.1109/TMI.2017.2679713 CrossRefGoogle Scholar
  22. 22.
    R. Acciarri, C. Adams, R. An et al., Convolutional neural networks applied to neutrino events in a liquid argon time projection chamber. J. Instrum. 12, P03011 (2017)CrossRefGoogle Scholar
  23. 23.
    M. An, C. Chen, C. Gao et al., A low-noise CMOS pixel direct charge sensor Topmetal-\({II}a\) for low background and low rate-density experiments. Nucl. Instrum. Meth. A 810, 144–150 (2016).  https://doi.org/10.1016/j.nima.2015.11.153 CrossRefGoogle Scholar

Copyright information

© China Science Publishing & Media Ltd. (Science Press), Shanghai Institute of Applied Physics, the Chinese Academy of Sciences, Chinese Nuclear Society and Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Meng-Yao Huang
    • 1
    Email author
  • Hua Pei
    • 2
  • Xiang-Ming Sun
    • 2
  • Shu-Guang Zou
    • 3
  1. 1.Department of Physics and AstronomyIowa State UniversityAmesUSA
  2. 2.PLAC, Key Laboratory of Quark & Lepton Physics (MOE)Central China Normal UniversityWuhanChina
  3. 3.College of Information Science and EngineeringHenan University of TechnologyZhengzhouChina

Personalised recommendations