Advertisement

Room-temperature test system for 162.5 MHz high-power couplers

  • Long Chen
  • Shen-Hu Zhang
  • Yong-Ming Li
  • Ruo-Xu Wang
  • Tiancai Jiang
  • Lei Yang
  • Chun-Long Li
  • An-Dong Wu
  • Shi-Chun Huang
  • Feng Pan
  • Xin-Meng Liu
  • Yuan He
Article
  • 9 Downloads

Abstract

Fundamental power couplers are crucial components for feeding radio frequency power to accelerating cavities. Couplers must be tested and conditioned on a room-temperature test stand to evaluate and potentially improve their performance before being installed in an accelerating cavity. A new test system has been designed and is under construction at the institute of modern physics. For this test system, multiple conditioning modes, including the pulse mode, CW mode, and amplitude-sweeping mode, have been embedded in the low-level radio frequency system of the test stand. All of these conditioning modes can be run manually or automatically. In addition, a novel test cavity is proposed and has been designed, which facilitates non-contact conditioning and a multi-purpose test stand.

Keywords

Couplers conditioning Test stand LLRF control system Test cavity 

References

  1. 1.
    W.L. Zhan, H.S. Xu, Advanced fission energy program–ADS transmutation system. Bull. Chin. Acad. Sci. 27, 375 (2015).  https://doi.org/10.3969/j.issn.1000-3045.2012.03.017 CrossRefGoogle Scholar
  2. 2.
    L.J. Wen, S.H. Zhang, Y.M. Li et al., Study of medium beta elliptical cavities for CADS. Chin. Phys. C 40, 027004 (2016).  https://doi.org/10.1088/1674-1137/40/2/027004 CrossRefGoogle Scholar
  3. 3.
    A.D. Wu, S.H. Zhang, W.M. Yue et al., Design study on medium beta superconducting half-wave resonator at IMP. Nucl. Sci. Tech. 27, 80 (2016).  https://doi.org/10.1007/s41365-016-0081-y CrossRefGoogle Scholar
  4. 4.
    T.M. Huang, W.M. Pan, Q. Ma et al., High power input coupler development for BEPCII 500 MHz superconducting cavity. Nucl. Instrum. Methods Phys. Res. A 623, 895 (2010).  https://doi.org/10.1016/j.nima.2010.08.108 CrossRefGoogle Scholar
  5. 5.
    Y.G. Martínez, M. Baylac, P. Boge et al., Final results of power conditioning of SPIRAL 2 couplers. Nucl. Instrum. Methods Phys. Res. A 870, 37 (2017).  https://doi.org/10.1016/j.nima.2017.07.004 CrossRefGoogle Scholar
  6. 6.
    W.M. Pan, T.M. Huang, Q. Ma et al., Development of a 500 MHz high power RF test stand. Chin. Phys. C 36, 355 (2012).  https://doi.org/10.1088/1674-1137/36/4/011 CrossRefGoogle Scholar
  7. 7.
    S. Kazakov, B.M. Hanna, T.N. Khabiboulline et al., Test stand for 325 MHz power couplers. Paper presnented at Proceedings of LINAC2014, Geneva, Switzerland, August 31–5 September (2014)Google Scholar
  8. 8.
    H. Jenhani, T. Garvey, A. Variola, RF conditioning studies of input power couplers for superconducting cavities operating in pulsed mode. Nucl. Instrum. Methods Phys. Res. A 595, 549 (2008).  https://doi.org/10.1016/j.nima.2008.07.111 CrossRefGoogle Scholar
  9. 9.
    R. Kumar, M. Jose, G.N. Singh et al., RF characterization and testing of ridge waveguide transitions for RF power couplers. Nucl. Instrum. Methods Phys. Res. A 838, 66 (2016).  https://doi.org/10.1016/j.nima.2016.07.029 CrossRefGoogle Scholar
  10. 10.
    User guide and specifications, NI myRIO-1900. http://www.ni.com. Accessed 20 Sept 2017
  11. 11.
    Minicircuits, Hompage. https://www.minicircuits.com. Accessed 20 Sept 2017
  12. 12.
    H. Padamsee, RF Superconditivity: Science, Technology, and Applications (Wiley-VCH, Berlin, 2009), p. 292CrossRefGoogle Scholar
  13. 13.
    Y. Yamamoto, T. Honma, E. Kako et al., High gradient cavity performance for the ILC KEK. in STF-2 cryomodule. Paper presented at Proceedings of LINAC2016,Busan, Korea, 8-13 May 2016. http://accelconf.web.cern.ch/AccelConf/ipac2016/doi/JACoW-IPAC2016-WEPMB017.html. https://doi.org/10.18429/JACoW-IPAC2016-WEPMB017
  14. 14.
    R. Parodi, Multipacting. Paper presented at Proceedings, CAS - CERN Accelerator School: RF for Accelerators, Ebeltoft, Denmark, 8–17 (2010). http://cds.cern.ch/record/1406274. https://doi.org/10.5170/CERN-2011-007.447
  15. 15.
    C. Wang, L.H. Chang, M.H. Chang et al., Mitigation of multipacting, enhanced by gas condensation on the high power input coupler of a superconducting RF module, by comprehensive warm aging. Nucl. Instrum. Methods Phys. Res. A 872, 150 (2017).  https://doi.org/10.1016/j.nima.2017.08.012 CrossRefGoogle Scholar
  16. 16.
    P.N. Ostroumov, S. Kazakovb, D. Morrisa et al., Suppression of multipacting in high power RF couplers operating with superconducting cavities. Nucl. Instrum. Methods Phys. Res. A 856, 77 (2017).  https://doi.org/10.1016/j.nima.2017.02.081 CrossRefGoogle Scholar
  17. 17.
    T.P. Wangler, RF Linear Accelerators, 2nd edn. (Wiley-VCH, Berlin, 2008), p. 145CrossRefGoogle Scholar
  18. 18.
    D.M. Pozar, Microwave Engineering, 4th edn. (Wiley, Hoboken, 2005), p. 82Google Scholar
  19. 19.
    Computer Science Technology, Hompage. https://www.cst.com. Accessed 20 Dec 2017
  20. 20.
    K. Zhou, L. Yang, G.P. Sun et al., Geometry dependent multipacting of a superconducting quarter-wave resonator at PKU. Chin. Phys. C 37, 077002 (2013).  https://doi.org/10.1088/1674-1137/37/7/077002 CrossRefGoogle Scholar

Copyright information

© China Science Publishing & Media Ltd. (Science Press), Shanghai Institute of Applied Physics, the Chinese Academy of Sciences, Chinese Nuclear Society and Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Long Chen
    • 1
    • 2
  • Shen-Hu Zhang
    • 2
  • Yong-Ming Li
    • 2
  • Ruo-Xu Wang
    • 2
  • Tiancai Jiang
    • 2
  • Lei Yang
    • 1
    • 2
  • Chun-Long Li
    • 2
  • An-Dong Wu
    • 2
  • Shi-Chun Huang
    • 2
  • Feng Pan
    • 1
    • 2
  • Xin-Meng Liu
    • 1
    • 2
  • Yuan He
    • 2
  1. 1.University of Chinese Academy of SciencesBeijingChina
  2. 2.Institute of Modern PhysicsChinese Academy of SciencesLanzhouChina

Personalised recommendations