Advertisement

Ultrasonic positioning system for the calibration of central detector

  • Guo-Lei Zhu
  • Jiang-Lai Liu
  • Qi WangEmail author
  • Meng-Jiao Xiao
  • Tao Zhang
Article
  • 12 Downloads

Abstract

A thorough detector response calibration using radioactive sources is necessary for the Jiangmen Underground Neutrino Observatory. Herein, we discuss the design of a source positioning system based on ultrasonic technology, aiming for a 3-cm precision over the entire 35-m diameter detector sphere. A prototype system is constructed and demonstrated for the experiment.

Keywords

JUNO Calibration Ultrasonic positioning 

References

  1. 1.
    T. Adam,  F. An, G. An et al. (JUNO collaboration), in JUNO Conceptual Design Report, arXiv:1508.07166 (2015)
  2. 2.
    F.P. An,  G.P. An, Q. An et al., (JUNO Collaboration), Neutrino physics with JUNO. J. Phys. G: Nucl. Part. Phys. 43, 030401 (2016).  https://doi.org/10.1088/0954-3899/43/3/030401 CrossRefGoogle Scholar
  3. 3.
    L. Zhan, Y.F. Wang, J. Cao et al., Determination of the neutrino mass hierarchy at an intermediate baseline. Phys. Rev. D 78, 111103(R) (2008).  https://doi.org/10.1103/PhysRevD.78.111103 CrossRefGoogle Scholar
  4. 4.
    Y.F. Li, J. Cao, Y.F. Wang et al., Unambiguous determination of the neutrino mass hierarchy using reactor neutrinos. Phys. Rev. D 88, 013008 (2013).  https://doi.org/10.1103/PhysRevD.88.013008 CrossRefGoogle Scholar
  5. 5.
    X.C. Ye, B.X. Yu, X. Zhou et al., Preliminary study of light yield dependence on LAB liquid scintillator composition. Chin. Phys. C 39, 096003 (2015).  https://doi.org/10.1088/1674-1137/39/9/096003 CrossRefGoogle Scholar
  6. 6.
    X. Zhou, Q.M. Zhang, Q. Liu et al., Densities, isobaric thermal expansion coefficients and isothermal compressibilities of linear alkylbenzene. Phys. Scr. 90, 055701 (2015).  https://doi.org/10.1088/0031-8949/90/5/055701 CrossRefGoogle Scholar
  7. 7.
    Y.F. Wang, S. Qian, T. Zhao et al., A new design of large area MCP-PMT for the next generation neutrino experiment. Nucl. Instrum. Methods A 695, 113–117 (2012).  https://doi.org/10.1016/j.nima.2011.12.085 CrossRefGoogle Scholar
  8. 8.
    M. He, in TIPP 2017 proceeding of Double Calorimetry System in JUNO, arXiv:1706.08761 (2017)
  9. 9.
    L. Zhan, Y.F. Wang, J. Cao et al., Experimental requirements to determine the neutrino mass hierarchy using reactor neutrinos. Phys. Rev. D 79, 073007 (2009).  https://doi.org/10.1103/PhysRevD.79.073007 CrossRefGoogle Scholar
  10. 10.
    X. Qian, D.A. Dwyer, R.D. McKeown et al., Mass hierarchy resolution in reactor anti-neutrino experiments: parameter degeneracies and detector energy response. Phys. Rev. D 87, 033005 (2013).  https://doi.org/10.1103/PhysRevD.87.033005 CrossRefGoogle Scholar
  11. 11.
    J. Liu, B. Cai, R. Carr et al., Automated calibration system for a high-precision measurement of neutrino mixing angle θ13 with the Daya bay antineutrino detectors. Nucl. Instrum. Methods A 750, 19–37 (2014).  https://doi.org/10.1016/j.nima.2014.02.049 CrossRefGoogle Scholar
  12. 12.
    F.P. An, J.Z. Bai, A.B. Balantekin et al., (Daya Bay Collaboration), Observation of electron-antineutrino disappearance at Daya Bay. Phys. Rev. Lett. 108, 171803 (2012).  https://doi.org/10.1103/PhysRevLett.108.171803 CrossRefGoogle Scholar
  13. 13.
    M. Xiao, JUNO central detector and calibration strategy, talk on International Workshop on Next Generation Nucleon Decay and Neutrino Detectors (NNN16) Google Scholar
  14. 14.
    Q. Liu, M. He, X.F. Ding et al. in A Vertex Reconstruction Algorithm in the Central Detector of JUNO, arXiv:1803.09394
  15. 15.
    B. Møhl, M. Wahlberg, A. Heerfordt, A large-aperture array of nonlinked receivers for acoustic positioning of biological sound sources. J. Acoust. Soc. Am. 109, 434–437 (2001).  https://doi.org/10.1121/1.1323462 CrossRefGoogle Scholar
  16. 16.
    T. Tian, Underwater positioning and navigation technology (National Defence Industry Press, Beijing, 2007), pp. 20–21Google Scholar
  17. 17.
    H.S. Hashemi, H. Rivaz, Global time-delay estimation in ultrasound elastography. IEEE Trans. Ultrason Ferroelectr. 64, 1625–1636 (2017).  https://doi.org/10.1109/TUFFC.2017.2717933 CrossRefGoogle Scholar
  18. 18.
    M. Georgiev, R. Bregovic, A. Gotchev, Time-of-flight range measurement in low-sensing environment: noise analysis and complex-domain non-local denoising. IEEE Trans. Image Process. 27, 2911–2926 (2018).  https://doi.org/10.1109/TIP.2018.2807126 MathSciNetCrossRefGoogle Scholar
  19. 19.
    J.F. Wang, N. Zou, F. Jin, Research on integrated positioning approach based on long/ultra-short baseline. J. Acoust. Soc. Am. 143, 1958 (2018).  https://doi.org/10.1121/1.5036434 CrossRefGoogle Scholar
  20. 20.
    Y. Watanabe, H. Ochi, T. Shimura, The study on data transmission with short positioning pulse in deep sea. J. Acoust. Soc. Am. 120, 3049–3058 (2006).  https://doi.org/10.1121/1.4787261 CrossRefGoogle Scholar
  21. 21.
    Z. Li, G. Qi, Z.X. Sun, A short baseline-based real-time high-precision ROV position system. High Technol. Lett. 23(12), 1230–1235 (2013)Google Scholar
  22. 22.
    D.J. Thomson, S.E. Dosso, D.R. Barclay, Modeling AUV localization error in a long baseline acoustic positioning system. IEEE J. Ocean. Eng. 134, 1–14 (2017).  https://doi.org/10.1109/JOE.2017.2771898 CrossRefGoogle Scholar
  23. 23.
    X. Liu, N. Zou, Y. Zhang, Methods of unwrapping phase ambiguity and selecting direct sounds in an ultra short baseline positioning system. J. Acoust. Soc. Am. 142, 2731 (2017).  https://doi.org/10.1121/1.5014978 CrossRefGoogle Scholar
  24. 24.
    D. Sun, J. Gu, J. Zhang, et al. Design of high accuracy ultra short baseline underwater acoustic position system, in IEEE International Conference on Signal Processing, Communications and Computing. (Xiamen, China, 2017)Google Scholar
  25. 25.
    S. Zhao, C.J. Qiao, Y.K. Wang., On the navigation positioning technologies in AUV underwater docking, in Proceedings of the 31st Chinese Control Conference, (Hefei, China, 2012)Google Scholar
  26. 26.
    Y.Y. Wang, C.J. Qiao, S.Y. Liu. Design of autonomous underwater vehicle positioning system, in 2016 IEEE Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC), (Xi’an, China, 2016)Google Scholar
  27. 27.
    L. Paull, S. Saeedi, M. Seto et al., AUV navigation and localization: a review. IEEE J. Ocean. Eng. 39(1), 131–149 (2014).  https://doi.org/10.1109/JOE.2013.2278891 CrossRefGoogle Scholar

Copyright information

© China Science Publishing & Media Ltd. (Science Press), Shanghai Institute of Applied Physics, the Chinese Academy of Sciences, Chinese Nuclear Society and Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Guo-Lei Zhu
    • 1
  • Jiang-Lai Liu
    • 2
  • Qi Wang
    • 1
    Email author
  • Meng-Jiao Xiao
    • 3
    • 4
  • Tao Zhang
    • 2
  1. 1.School of Marine Science and TechnologyNorthwestern Polytechnical UniversityXi’anChina
  2. 2.Shanghai Laboratory for Particle Physics and Cosmology, INPAC and School of Physics and AstronomyShanghai Jiao Tong UniversityShanghaiChina
  3. 3.Department of PhysicsUniversity of MarylandCollege ParkUSA
  4. 4.Center of High Energy PhysicsPeking UniversityBeijingChina

Personalised recommendations