Advertisement

Study of neutron production and moderation for sulfur neutron capture therapy

  • Meng Peng
  • Guo-Zhu He
  • Qi-Wei Zhang
  • Bin Shi
  • Hong-Qing Tang
  • Zu-Ying Zhou
Article
  • 15 Downloads

Abstract

Neutron capture therapy with Sulfur-33, similar to boron neutron capture therapy with Boron-10, is effective in treating some types of tumors including ocular melanoma. The key point in sulfur neutron capture therapy is whether the neutron beam flux and the resonance capture cross section of \(^{33}\hbox {S(n},\alpha )^{30}\hbox {Si}\) reaction at 13.5 keV can achieve the requirements of radiotherapy. In this research, the authors investigated the production of 13.5 keV neutron production and moderation based on an accelerator neutron source. A lithium glass detector was used to measure the neutron flux produced via near threshold \(^{7}\hbox {Li(p,n)}^{7}\hbox {Be}\) reaction using the time-of-flight method. Furthermore, the moderation effects of different kinds of materials were investigated using Monte Carlo simulation.

Keywords

Sulfur Neutron capture therapy Boron neutron capture therapy \(^{33}\hbox {S(n}, \alpha )^{30}\hbox {Si}\) resonance reaction \({}^{7}\hbox {Li(p, n)}^{7}\hbox {Be}\) neutron source 

References

  1. 1.
    J. Chadwick, The existence of a neutron. Proc. R. Soc. 136, 692 (1932).  https://doi.org/10.1098/rspa.1932.0112 CrossRefGoogle Scholar
  2. 2.
    G.L. Locher, Biological effects and the therapeutic possibilities of neutrons. Am. J. Roentgenol. 36, 1 (1936)Google Scholar
  3. 3.
    L.E. Farr, W.H. Sweet, H.B. Locksley et al., Neutron capture therapy of gliomas using boron. Trans. Am. Neurol. Assoc. 13, 110 (1954)Google Scholar
  4. 4.
    R.L. Moss, Critical review, with an optimistic outlook, on boron neutron capture therapy (BNCT). Appl. Radiat. Isot. 88, 2 (2014).  https://doi.org/10.1016/j.apradiso.2013.11.109 CrossRefGoogle Scholar
  5. 5.
    I. Porras, Sulfur-33 nanoparticles: a Monte Carlo study of their potential as neutron capturers for enhancing boron neutron capture therapy of cancer. Appl. Radiat. Isot. 69, 1838 (2011).  https://doi.org/10.1016/j.apradiso.2011.04.002 CrossRefGoogle Scholar
  6. 6.
    M. Sabaté-Gilarte, J. Praena, I. Porras et al., Measurement of the \(^{33}\)S(n,\(\alpha\)) cross section at n\_TOF(CERN): applications to BNCT. Rep. Pract. Oncol. Radiother. 21, 113 (2016).  https://doi.org/10.1016/j.rpor.2014.08.007 CrossRefGoogle Scholar
  7. 7.
    C. Wagemans, H. Weigmann, R. Barthelemy, Measurement and resonance analysis of the \(^{33}\)S(n,\(\alpha\)) cross section. Nucl. Phys. A 469, 497 (1987).  https://doi.org/10.1016/0375-9474(87)90035-2 CrossRefGoogle Scholar
  8. 8.
    I. Porras, Enhancement of neutron radiation dose by the addition of sulphur-33 atoms. Phys. Med. Biol. 53, L1 (2008).  https://doi.org/10.1088/0031-9155/53/7/L01 CrossRefGoogle Scholar
  9. 9.
    I. Porras, J. Praena, M. Sabatégilarte et al, \(^{33}\)S(n,\(\alpha\)) cross section measurement at n\_TOF: implications in neutron capture therapy. http://digital.csic.es/handle/10261/123302
  10. 10.
    J. Praena, M. Sabaté-Gilarte, I. Porras et al., \(^{33}\)S as a cooperative capturer for BNCT. Appl. Radiat. Isot. 88, 203 (2014).  https://doi.org/10.1016/j.apradiso.2013.12.039 CrossRefGoogle Scholar
  11. 11.
    I. Porras, P.L. Esquinas, M.G. Feldmann et al., A potential selective radiotherapy for ocular melanoma by sulfur neutron capture, in 16th International Congress on Neutron Capture Therapy (ICNCT-16) , Helsinki, Finland, June 14–19 (2014)Google Scholar
  12. 12.
    J. Praena, Experimental study of the 13.5 keV resonance of the \(^{33}\)S(n,\(\alpha\))\(^{30}\)Si reaction at CERN n\_TOF fa-cility for BNCT, in 16th International Congress on Neutron Capture Therapy (ICNCT-16), Helsinki, Finland, June 14–19 (2014)Google Scholar
  13. 13.
    I. Porras, M. Sabaté-Gilarte, J. Praena et al., \(^{33}\)S for neutron capture therapy: nuclear data for Monte Carlo calculations. Nucl. Data Sheets 120, 246 (2014).  https://doi.org/10.1016/j.nds.2014.07.058 CrossRefGoogle Scholar
  14. 14.
    M. Sabaté-Gilarte, The \(^{33}\)S(n,\(\alpha\))\(^{30}\)Si cross section measured at n\_TOF Experimental Area 2(CERN): from thermal to the resolved resonance region, in International Nuclear Data Conference for Science and Technology (ND2016), Bruges, Belgium , September 11–16 (2016)Google Scholar
  15. 15.
    M. Sabaté-Gilarte, J. Praena, I. Porras et al., Measurement of the \(^{33}\)S(n,\(\alpha\)) cross section at n\_TOF(CERN): applications to BNCT. Reports Prac. Onco. Radio 21, 113 (2016).  https://doi.org/10.1016/j.rpor.2014.08.007 CrossRefGoogle Scholar
  16. 16.
    T.E. Blue, J. Yanch, Accelerator-based epithermal neutron sources for boron neutron capture therapy of brain tumors. J. Neuro-Oncol. 62, 19 (2003)Google Scholar
  17. 17.
    D.M. Minsky, A.J. Kreiner, Near threshold \(^7\)Li(p, n)\(^7\)Be reaction as neutron source for BNCT. Appl. Radiat. Isot. 106, 68 (2015).  https://doi.org/10.1016/j.apradiso.2015.07.038 CrossRefGoogle Scholar
  18. 18.
    K.V.K. Iyengar, S.K. Gupta, K.K. Sekharan et al., Fluctuations in the integrated cross section of the reaction \(^{45}\)Sc(p, n)\(^{45}\)Ti. Nucl. Phys. A 96, 521 (1967).  https://doi.org/10.1016/0375-9474(67)90602-1 CrossRefGoogle Scholar
  19. 19.
    M.S. Herrera, G.A. Moreno, A.J. Kreiner et al., New method to evaluate the \(^7\)Li(p, n)\(^7\)Be reaction near threshold. Nucl. Instrum. Meth. B 349, 64 (2015).  https://doi.org/10.1016/j.nimb.2015.01.080 CrossRefGoogle Scholar
  20. 20.
    R. Mateus, A.P. Jesus, B. Braizinha et al., Proton-induced \(\gamma\)-ray analysis of lithium in thick samples. Nucl. Instrum. Meth. B 190, 117 (2002).  https://doi.org/10.1016/S0168-583X(01)01222-8 CrossRefGoogle Scholar
  21. 21.
    D. Schlegel, Target User’s Manual. Abteilung Ionisierende Strahlung Laborbericht (2005)Google Scholar
  22. 22.
    D. Schlegel, S. Guldbakke, Why do We Need Target? (Springer, Berlin, 2001), p. 881Google Scholar
  23. 23.
    IAEA-TECDOC-1223, Current Status of Neutron Capture Therapy, (International Atomic Energy Agency, Austria, 2001)Google Scholar
  24. 24.
  25. 25.
  26. 26.
    C.L. Lan, M. Peng, Y.Z. et al., Geant4 simulation of \(^{238}\)U(n,f) reaction induced by D-T neutron source. Nucl. Sci. Tech. 28, 8 (2016).  https://doi.org/10.1007/s41365-016-0158-7
  27. 27.
    B. Yang, X. Guan, X. Cao et al., Progresses in the project of upgrading HI-13 tandem accelerator at CIAE. Nucl. Tech. 31, 41 (2008). (in Chinese) Google Scholar
  28. 28.
    Q.W. Zhang, G.Z. He, X.C. Ruan et al., Calibration of neutron detection efficiency of li-glass detector. Nucl. Phys. Rev. 34, 2460 (2013).  https://doi.org/10.11804/NuclPhysRev.30.02.156. (in Chinese) CrossRefGoogle Scholar
  29. 29.
    G.F. Auchampaugh, J. Halperin, R. L. Macklin et al., Kilovolt \(^{33}\text{S}(n, {\alpha }_{0})\) and \(^{33}\text{ S }(n, {\gamma })\) cross sections: Importance in the nucleosynthesis of the rare nucleus \(^{36}\text{ S }\). Phys. Rev. C 12, 1126 (1975).  https://doi.org/10.1103/PhysRevC.12.1126
  30. 30.
    P.E. Koehler, J.A. Harvey, N.W. Hill, Two detectors for (n, p) and (n,\(\alpha\)) measurements at white neutron sources. Nucl. Instrum. Meth. A 361, 270 (1995).  https://doi.org/10.1016/0168-9002(95)00123-9 CrossRefGoogle Scholar

Copyright information

© China Science Publishing & Media Ltd. (Science Press), Shanghai Institute of Applied Physics, the Chinese Academy of Sciences, Chinese Nuclear Society and Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Meng Peng
    • 1
    • 2
  • Guo-Zhu He
    • 1
  • Qi-Wei Zhang
    • 1
  • Bin Shi
    • 1
  • Hong-Qing Tang
    • 1
  • Zu-Ying Zhou
    • 1
  1. 1.Key Laboratory of Nuclear DataChina Institute of Atomic EnergyBeijingChina
  2. 2.College of Liberal Arts and SciencesNational University of Defense TechnologyChangshaChina

Personalised recommendations