Advertisement

Influence of α-clustering nuclear structure on the rotating collision system

  • Zhi-Wan Xu
  • Song Zhang
  • Yu-Gang Ma
  • Jin-Hui Chen
  • Chen Zhong
Article
  • 22 Downloads

Abstract

In recent years, the collective motion properties of global rotation of the symmetric colliding system in relativistic energies have been investigated. In addition, the initial geometrical shape effects on the collective flows have been explored using a hydrodynamical model, a transport model, etc. In this work, we study the asymmetric \(^{12}{\mathrm {C}} + ^{197}\!\!\!{\mathrm{Au}}\) collision at \(200\,\hbox { GeV/}c\) and the effect of the exotic nuclear structure on the global rotation using a multi-phase transport model. The global angular momentum and averaged angular speed were calculated and discussed for the collision system at different evolution stages.

Keywords

Chiral magnetic effect Chiral vortical effect Initial geometrical effect Quark–gluon plasma Relativistic heavy-ion collisions 

References

  1. 1.
    L. Adamczyk, J.K. Adkins, G. Agakishiev et al., (STAR Collaboration), Beam-energy dependence of the directed flow of protons, antiprotons, and pions in Au + Au collisions. Phys. Rev. Lett. 112, 162301 (2014).  https://doi.org/10.1103/PhysRevLett.112.162301 CrossRefGoogle Scholar
  2. 2.
    L. Adamczyk, J.K. Adkins, G. Agakishiev, (STAR Collaboration), Elliptic flow of identified hadrons in Au + Au collisions at \(\sqrt{s_\text{ NN }}\) = 7.7–62.4 GeV. Phys. Rev. C 88, 014902 (2013).  https://doi.org/10.1103/PhysRevC.88.014902 CrossRefGoogle Scholar
  3. 3.
    L. Adamczyk, J.K. Adkins, G. Agakishiev et al., (STAR Collaboration), Third harmonic flow of charged particles in Au + Au collisions at \(\sqrt{s_\text{ NN }}\) = 200 GeV. Phys. Rev. C 88, 014904 (2013).  https://doi.org/10.1103/PhysRevC.88.014904 CrossRefGoogle Scholar
  4. 4.
    L. Adamczyk, J.K. Adkins, G. Agakishiev et al., (STAR Collaboration), Observation of charge asymmetry dependence of pion elliptic flow and the possible chiral magnetic wave in heavy-ion collisions. Phys. Rev. Lett. 114, 252302 (2015).  https://doi.org/10.1103/PhysRevLett.114.252302 CrossRefGoogle Scholar
  5. 5.
    J. Adams, C. Adler, M.M. Aggarwal et al., (STAR Collaboration), Evidence from \(d+\rm A \rm u \) measurements for final-state suppression of high-\({p}_{T}\) hadrons in \(\rm A \rm u +\rm A \rm u \) collisions at RHIC. Phys. Rev. Lett. 91, 072304 (2003).  https://doi.org/10.1103/PhysRevLett.91.072304 CrossRefGoogle Scholar
  6. 6.
    J. Adams, C. Adler, M.M. Aggarwal et al., (STAR Collaboration), Transverse-momentum and collision-energy dependence of high-\({p}_{T}\) hadron suppression in \(\rm A \rm u +\rm A \rm u \) collisions at ultrarelativistic energies. Phys. Rev. Lett. 91, 172302 (2003).  https://doi.org/10.1103/PhysRevLett.91.172302 CrossRefGoogle Scholar
  7. 7.
    L. Adamczyk, J.K. Adkins, G. Agakishiev et al., (STAR Collaboration), Beam-energy-dependent two-pion interferometry and the freeze-out eccentricity of pions measured in heavy ion collisions at the STAR detector. Phys. Rev. C 92, 014904 (2015).  https://doi.org/10.1103/PhysRevC.92.014904 CrossRefGoogle Scholar
  8. 8.
    A. Adare, et al. (PHENIX Collaboration), Beam-energy and system-size dependence of the space-time extent of the pion emission source produced in heavy ion collisions (2014). arXiv:1410.2559
  9. 9.
    Y. Jiang, Z.-W. Lin, J. Liao, Rotating quark-gluon plasma in relativistic heavy-ion collisions. Phys. Rev. C 94, 044910 (2016).  https://doi.org/10.1103/PhysRevC.94.044910 CrossRefGoogle Scholar
  10. 10.
    Z.-T. Liang, X.-N. Wang, Globally polarized quark-gluon plasma in noncentral \(A+A\) collisions. Phys. Rev. Lett. 94, 102301 (2005).  https://doi.org/10.1103/PhysRevLett.94.102301 CrossRefGoogle Scholar
  11. 11.
    X.-G. Huang, P. Huovinen, X.-N. Wang, Quark polarization in a viscous quark-gluon plasma. Phys. Rev. C 84, 054910 (2011).  https://doi.org/10.1103/PhysRevC.84.054910 CrossRefGoogle Scholar
  12. 12.
    A.H. Tang, B. Tu, C.S. Zhou, Practical considerations for measuring global spin alignment of vector mesons in relativistic heavy ion collisions. Phys. Rev. C 98, 044907 (2018).  https://doi.org/10.1103/PhysRevC.98.044907 CrossRefGoogle Scholar
  13. 13.
    Z.-T. Liang, X.-N. Wang, Spin alignment of vector mesons in non-central A + A collisions. Phys. Lett. B 629, 20–26 (2005).  https://doi.org/10.1016/j.physletb.2005.09.060 CrossRefGoogle Scholar
  14. 14.
    L. Adamczyk et al., (STAR Collaboration), Global \(\Lambda \) hyperon polarization in nuclear collisions. Nature 541, 62–65 (2017).  https://doi.org/10.1038/nature23004 CrossRefGoogle Scholar
  15. 15.
    R.D. de Souza, J. Takahashi, T. Kodama et al., Effects of initial state fluctuations in the final state elliptic flow measurements using the NeXSPheRIO model. Phys. Rev. C 85, 054909 (2012).  https://doi.org/10.1103/PhysRevC.85.054909 CrossRefGoogle Scholar
  16. 16.
    A. Chaudhuri, Fluctuating initial conditions and fluctuations in elliptic and triangular flow. Phys. Lett. B 710, 339–342 (2012).  https://doi.org/10.1016/j.physletb.2012.02.067 CrossRefGoogle Scholar
  17. 17.
    H. Song, S.A. Bass, U. Heinzi, Elliptic flow in \(\sqrt{s}\) = 200 GeV Au + Au collisions and \(\sqrt{s}\) = 2.76 TeV Pb + Pb collisions: insights from viscous hydrodynamics + hadron cascade hybrid model. Phys. Rev. C 83, 054912 (2011).  https://doi.org/10.1103/PhysRevC.83.054912 CrossRefGoogle Scholar
  18. 18.
    S. Floerchinger, U.A. Wiedemann, Mode-by-mode fluid dynamics for relativistic heavy ion collisions. Phys. Lett. B 728, 407–411 (2014).  https://doi.org/10.1016/j.physletb.2013.12.025 CrossRefGoogle Scholar
  19. 19.
    P. Bozek, W. Broniowski, E.R. Arriola, \(\alpha \) clusters and collective flow in ultrarelativistic carbon-heavy-nucleus collisions. Phys. Rev. C 064902, 90 (2014).  https://doi.org/10.1103/PhysRevC.90.064902 CrossRefGoogle Scholar
  20. 20.
    W. Broniowski, E.R. Arriola, Signatures of \(\alpha \) clustering in light nuclei from relativistic nuclear collisions. Phys. Rev. Lett. 112, 112501 (2014).  https://doi.org/10.1103/PhysRevLett.112.112501 CrossRefGoogle Scholar
  21. 21.
    L. Ma, G.L. Ma, Y.G. Ma, Initial partonic eccentricity fluctuations in a multiphase transport model. Phys. Rev. C 94, 044915 (2016).  https://doi.org/10.1103/PhysRevC.94.044915 CrossRefGoogle Scholar
  22. 22.
    L. Ma, G.L. Ma, Y.G. Ma, Anisotropic flow and flow fluctuations for Au + Au at \(\sqrt{{s}_\text{ NN }}=200\) GeV in a multiphase transport model. Phys. Rev. C 89, 044907 (2014).  https://doi.org/10.1103/PhysRevC.89.044907 CrossRefGoogle Scholar
  23. 23.
    L.X. Han, G.L. Ma, Y.G. Ma et al., Initial fluctuation effect on harmonic flows in high-energy heavy-ion collisions. Phys. Rev. C 84, 064907 (2011).  https://doi.org/10.1103/PhysRevC.84.064907 CrossRefGoogle Scholar
  24. 24.
    H.-C. Song, Y. Zhou, K. Gajdosova, Collective flow and hydrodynamics in large and small systems at the LHC. Nucl. Sci. Technol. 28, 99 (2017).  https://doi.org/10.1007/s41365-017-0245-4 CrossRefGoogle Scholar
  25. 25.
    J. Wang, Y.G. Ma, G.Q. Zhang, Initial fluctuation effect on elliptic flow in Au + Au collision at 1 GeV/A. Nucl. Sci. Technol. 24, 030501 (2013).  https://doi.org/10.13538/j.1001-8042/nst.2013.03.004 CrossRefGoogle Scholar
  26. 26.
    C.C. Guo, W.B. He, Y.G. Ma, Collective flows of \(^{16}\text{ O }+^{16}\text{ O }\) collisions with \(\alpha \)-clustering configurations. Chin. Phys. Lett. 34, 092101 (2017).  https://doi.org/10.1088/0256-307X/34/9/092101 CrossRefGoogle Scholar
  27. 27.
    X.-F. Luo, N. Xu, Search for the QCD critical point with fluctuations of conserved quantities in relativistic heavy-ion collisions at RHIC: an overview. Nucl. Sci. Technol. 28, 112 (2017).  https://doi.org/10.1007/s41365-017-0257-0 CrossRefGoogle Scholar
  28. 28.
    X. Jin, J. Chen, Z. Lin et al., Explore the QCD phase transition phenomena from a multiphase transport model. Sci. China Phys. Mech. 62, 11012 (2018).  https://doi.org/10.1007/s11433-018-9272-4 CrossRefGoogle Scholar
  29. 29.
    C.M. Ko, F. Li, Density fluctuations in baryon-rich quark matter. Nucl. Sci. Technol. 27, 140 (2016).  https://doi.org/10.1007/s41365-016-0141-3 CrossRefGoogle Scholar
  30. 30.
    Q.Y. Shou, G.L. Ma, Y.G. Ma, Charge separation with fluctuating domains in relativistic heavy-ion collisions. Phys. Rev. C 90, 047901 (2014).  https://doi.org/10.1103/PhysRevC.90.047901 CrossRefGoogle Scholar
  31. 31.
    S. Zhang, Y.G. Ma, J.H. Chen et al., Nuclear cluster structure effect on elliptic and triangular flows in heavy-ion collisions. Phys. Rev. C 95, 064904 (2017).  https://doi.org/10.1103/PhysRevC.95.064904 CrossRefGoogle Scholar
  32. 32.
    F.D. Murnaghan, Review: G. Gamow, constitution of atomic nuclei and radioactivity. Bull. Amer. Math. Soc. 39, 487 (1993)CrossRefGoogle Scholar
  33. 33.
    W.B. He, Y.G. Ma, X.G. Cao et al., Giant dipole resonance as a fingerprint of \(\alpha \) clustering configurations in \(^{12}\text{ C }\) and \(^{16}\text{ O }\). Phys. Rev. Lett. bf 113, 032506 (2014).  https://doi.org/10.1103/PhysRevLett.113.032506 CrossRefGoogle Scholar
  34. 34.
    W.B. He, Y.G. Ma, X.G. Cao et al., Dipole oscillation modes in light \(\alpha \)-clustering nuclei. Phys. Rev. C 94, 014301 (2016).  https://doi.org/10.1103/PhysRevC.94.014301 CrossRefGoogle Scholar
  35. 35.
    B.S. Huang, Y.G. Ma, W.B. He, Photonuclear reaction as a probe for \(\alpha \)-clustering nuclei in the quasi-deuteron region. Phys. Rev. C 95, 034606 (2017).  https://doi.org/10.1103/PhysRevC.95.034606 CrossRefGoogle Scholar
  36. 36.
    B.S. Huang, Y.G. Ma, W.B. He, Alpha-clustering effects on \(^{16}\text{ O }(4\gamma, \text{ np })^{14}\text{ N }\) in quasi-deuteron region. Eur. Phys. J. A 53, 119 (2017)CrossRefGoogle Scholar
  37. 37.
    Z.-W. Lin, C.M. Ko, B.-A. Li et al., Multiphase transport model for relativistic heavy ion collisions. Phys. Rev. C 72, 064901 (2005).  https://doi.org/10.1103/PhysRevC.72.064901 CrossRefGoogle Scholar
  38. 38.
    G.-L. Ma, Z.-W. Lin, Predictions for \(\sqrt{{s}_\text{ NN }}=5.02\) TeV Pb + Pb collisions from a multiphase transport model. Phys. Rev. C 93, 054911 (2016).  https://doi.org/10.1103/PhysRevC.93.054911 CrossRefGoogle Scholar
  39. 39.
    Z.-W. Lin, C.M. Ko, S. Pal, Partonic effects on pion interferometry at the relativistic heavy-ion collider. Phys. Rev. Lett. 89, 152301 (2002).  https://doi.org/10.1103/PhysRevLett.89.152301 CrossRefGoogle Scholar
  40. 40.
    B.I. Abelev, M.M. Aggarwal, Z. Ahammed et al., (STAR Collaboration), System-size independence of directed flow measured at the BNL relativistic heavy-ion collider. Phys. Rev. Lett. 101, 252301 (2008).  https://doi.org/10.1103/PhysRevLett.101.252301 CrossRefGoogle Scholar
  41. 41.
    A. Bzdak, G.-L. Ma, Elliptic and triangular flow in \(p\)–Pb and peripheral Pb–Pb collisions from parton scatterings. Phys. Rev. Lett. 113, 252301 (2014).  https://doi.org/10.1103/PhysRevLett.113.252301 CrossRefGoogle Scholar
  42. 42.
    G.-L. Ma, S. Zhang, Y.-G. Ma et al., Di-hadron azimuthal correlation and Mach-like cone structure in a parton/hadron transport model. Phys. Lett. B 641, 362–367 (2006)CrossRefGoogle Scholar
  43. 43.
    X.-H. Jin, J.-H. Chen, Y.-G. Ma, \(\Omega \) and \(\phi \) production in Au + Au collisions at =11.5 and 7.7 GeV in a dynamical quark coalescence model. Nucl. Sci. Technol. 29(2), 54 (2018).  https://doi.org/10.1007/s41365-018-0393-1 CrossRefGoogle Scholar
  44. 44.
    K. Hattori, X.-G. Huang, Novel quantum phenomena induced by strong magnetic fields in heavy-ion collisions. Nucl. Sci. Technol. 28, 26 (2017)CrossRefGoogle Scholar
  45. 45.
    X.-L. Zhao, Y.-G. Ma, G.-L. Ma, Electromagnetic fields in small systems from a multiphase transport model. Phys. Rev. C 97, 024910 (2018).  https://doi.org/10.1103/PhysRevC.97.024910 CrossRefGoogle Scholar
  46. 46.
    X.-N. Wang, M. Gyulassy, HIJING: a Monte Carlo model for multiple jet production in \(\text{ pp }\), \(\text{ pA }\), and \(\text{ AA }\) collisions. Phys. Rev. D 44, 3501–3516 (1991).  https://doi.org/10.1103/PhysRevD.44.3501 CrossRefGoogle Scholar
  47. 47.
    M. Gyulassy, X.-N. Wang, HIJING 1.0: a Monte Carlo program for parton and particle production in high energy hadronic and nuclear collisions. Comput. Phys. Commun. 83, 307 (1994).  https://doi.org/10.1016/0010-4655(94)90057-4 CrossRefGoogle Scholar
  48. 48.
    B. Zhang, ZPC 1.0.1: a parton cascade for ultrarelativistic heavy ion collisions. Comput. Phys. Commun. 109, 193–206 (1998)CrossRefGoogle Scholar
  49. 49.
    B.-A. Li, C.M. Ko, Formation of superdense hadronic matter in high energy heavy-ion collisions. Phys. Rev. C 52, 2037–2063 (1995).  https://doi.org/10.1103/PhysRevC.52.2037 CrossRefGoogle Scholar
  50. 50.
    T. Maruyama, K. Niita, A. Iwamoto, Extension of quantum molecular dynamics and its application to heavy-ion collisions. Phys. Rev. C 53, 297–304 (1996).  https://doi.org/10.1103/PhysRevC.53.297 CrossRefGoogle Scholar
  51. 51.
    S. Zhang, Y.G. Ma, J.H. Chen et al., Collective flows of \(\alpha \)-clustering \(^{12}\text{C} + ^{197}\text{Au}\) by using different flow analysis methods. Eur. Phys. J. A 54, 161 (2018).  https://doi.org/10.1140/epja/i2018-12597-y CrossRefGoogle Scholar
  52. 52.
    S.A. Voloshin, A.M. Poskanzer, A. Tang et al., Elliptic flow in the Gaussian model of eccentricity fluctuations. Phys. Lett. B 659, 537–541 (2008).  https://doi.org/10.1016/j.physletb.2007.11.043 CrossRefGoogle Scholar
  53. 53.
    B. Alver, G. Roland, Collision-geometry fluctuations and triangular flow in heavy-ion collisions. Phys. Rev. C 81, 054905 (2010).  https://doi.org/10.1103/PhysRevC.81.054905 CrossRefGoogle Scholar
  54. 54.
    R.A. Lacey, R. Wei, J. Jia et al., Initial eccentricity fluctuations and their relation to higher-order flow harmonics. Phys. Rev. C 83, 044902 (2011).  https://doi.org/10.1103/PhysRevC.83.044902 CrossRefGoogle Scholar
  55. 55.
    Y.G. Ma, W.Q. Shen, Z.Y. Zhu, Collective motions of reverse reaction system in the intermediate energy domain via the quantum molecular dynamics approach. Phys. Rev. C 51, 1029 (1995).  https://doi.org/10.1103/PhysRevC.51.1029 CrossRefGoogle Scholar
  56. 56.
    L. He, T. Edmonds, Z.-W. Lin et al., Phys. Lett. B 753, 506–510 (2016).  https://doi.org/10.1016/j.physletb.2015.12.051 CrossRefGoogle Scholar
  57. 57.
    G.-L. Ma, A. Bzdak, Flow in small systems from parton scatterings. Nucl. Phys. A 956, 745–748 (2016).  https://doi.org/10.1016/j.nuclphysa.2016.01.057 CrossRefGoogle Scholar
  58. 58.
    W.-T. Deng, X.-G. Huang, Vorticity in heavy-ion collisions. Phys. Rev. C 93, 064907 (2016).  https://doi.org/10.1103/PhysRevC.93.064907 CrossRefGoogle Scholar

Copyright information

© China Science Publishing & Media Ltd. (Science Press), Shanghai Institute of Applied Physics, the Chinese Academy of Sciences, Chinese Nuclear Society and Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Zhi-Wan Xu
    • 1
    • 2
  • Song Zhang
    • 3
    • 4
  • Yu-Gang Ma
    • 3
    • 4
  • Jin-Hui Chen
    • 3
    • 4
  • Chen Zhong
    • 3
    • 4
  1. 1.Department of PhysicsFudan UniversityShanghaiChina
  2. 2.Department of Physics and AstronomyUniversity of CaliforniaLos AngelesUSA
  3. 3.Key Laboratory of Nuclear Physics and Ion-beam Application (MOE), Institute of Modern PhysicsFudan UniversityShanghaiChina
  4. 4.Shanghai Institute of Applied PhysicsChinese Academy of SciencesShanghaiChina

Personalised recommendations