First-chance fission probability and presaddle nuclear dissipation

  • Wei YeEmail author
  • Ning Wang


Dissipation retards fission, resulting in a drop in the first-chance fission probability of a fissioning nucleus with respect to its statistical model value. We use the Langevin model to compute the evolution of the drop (due to friction), \(P_{f0}^{{\mathrm {drop}}}\), for the fissioning systems \(^{220}{\hbox {Th}}\) and \(^{240}{\hbox {Cf}}\) with the presaddle friction strength (\(\beta\)). The first-chance fission probability is shown to depend sensitively on \(\beta\), and the sensitivity is apparently greater than that of the total fission probability. We further find that although the total fission probability of heavy \(^{240}{\hbox {Cf}}\) is insensitive to \(\beta\), its first-chance fission probability is quite sensitive to \(\beta\). These results suggest that, to strongly limit the presaddle friction strength, an optimal experimental avenue is to measure the first-chance fission probability of heavy fissioning nuclei.


First-chance fission probability Presaddle dissipation effects Stochastic model 


  1. 1.
    E. Williams, D.J. Hinde, M. Dasgupta et al., Evolution of signatures of quasifission in reactions forming curium. Phys. Rev. C 88, 034611 (2013). CrossRefGoogle Scholar
  2. 2.
    M.V. Chushnyakova, I.I. Gontchar, Heavy ion fusion: possible dynamical solution of the problem of the abnormally large diffuseness of the nucleus–nucleus potential. Phys. Rev. C 87, 014614 (2013). CrossRefGoogle Scholar
  3. 3.
    D. Boilley, H.L. Lü, C.W. Shen et al., Fusion hindrance of heavy ions: role of the neck. Phys. Rev. C 84, 054608 (2011). CrossRefGoogle Scholar
  4. 4.
    J. Tian, W. Ye, Investigating nuclear dissipation properties at large deformations via excitation energy at scission. Nucl. Sci. Technol. 27, 145 (2016). CrossRefGoogle Scholar
  5. 5.
    L. Cheng, P.W. Wen, J.J. Li et al., Production of heavy neutron-rich nuclei with radioactive beams in multinucleon transfer reactions. Nucl. Sci. Technol. 28, 110 (2017). CrossRefGoogle Scholar
  6. 6.
    A.N. Andreyev, K. Nishio, K.H. Schmidt, Nuclear fission: a review of experimental advances and phenomenology. Rep. Prog. Phys. 81, 016301 (2018). MathSciNetCrossRefGoogle Scholar
  7. 7.
    Z.F. Zhang, D.Q. Fang, Y.G. Ma, Decay modes of highly excited nuclei. Nucl. Sci. Technol. 29, 78 (2018). CrossRefGoogle Scholar
  8. 8.
    P. Fröbrich, I.I. Gontchar, Langevin description of fusion, deep-inelastic collisions and heavy-ion-induced fission. Phys. Rep. 292, 131–237 (1998). CrossRefGoogle Scholar
  9. 9.
    P.N. Nadtochy, G.D. Adeev, A.V. Karpov, More detailed study of fission dynamics in fusion–fission reactions within a stochastic approach. Phys. Rev. C 65, 064615 (2002). CrossRefGoogle Scholar
  10. 10.
    J. Sadhukhan, S. Pal, Spin dependence of the modified Kramers width of nuclear fission. Phys. Rev. C 78, 011603(R) (2008). CrossRefGoogle Scholar
  11. 11.
    W. Ye, Heavy-ion versus \(^{3}{{\text{ He }}}/^{4}{{\text{ He }}}\) fusion–fission reactions: angular momentum dependence of dissipation in nuclear fission. Phys. Rev. C 84, 034617(R) (2011). CrossRefGoogle Scholar
  12. 12.
    H. Eslamizadeh, Study of viscosity on the fission dynamics of the excited nuclei \(^{228}{{\text{ U }}}\) produced in \(^{19}{{\text{ F }}} + {}^{209}{{\text{ Bi }}}\) reactions. Int. J. Mod. Phys. E 24, 1550052 (2015). CrossRefGoogle Scholar
  13. 13.
    R. Sandal, B.R. Behera, V. Singh et al., Probing nuclear dissipation via evaporation residue excitation functions for the \(^{16,18}{{\text{ O }}} + {}^{198}{{\text{ Pt }}}\) reactions. Phys. Rev. C 91, 044621 (2015). CrossRefGoogle Scholar
  14. 14.
    H. Singh, K.S. Golda, S. Pal et al., Role of nuclear dissipation and entrance channel mass asymmetry in pre-scission neutron multiplicity enhancement in fusion–fission reactions. Phys. Rev. C 78, 024609 (2008). CrossRefGoogle Scholar
  15. 15.
    K. Mahata, S. Kailas, S.S. Kapoor, Fission barrier, damping of shell correction, and neutron emission in the fission of \(A \sim 200\). Phys. Rev. C 92, 034602 (2015). CrossRefGoogle Scholar
  16. 16.
    N. Kumar, S. Mohsina, J. Sadhukhan et al., Role of dynamical deformation in pre-scission neutron multiplicity. Phys. Rev. C 96, 034614 (2017). CrossRefGoogle Scholar
  17. 17.
    W. Ye, H.W. Yang, F. Wu, Isospin effects on the evaporation residue spin distribution. Phys. Rev. C 77, 011302(R) (2008). CrossRefGoogle Scholar
  18. 18.
    J.L. Rodríguez-Sánchez, J. Benlliure, J. Taïeb et al., Proton-induced fission cross sections on \(^{208}{{\text{ Pb }}}\) at high kinetic energies. Phys. Rev. C 90, 064606 (2014). CrossRefGoogle Scholar
  19. 19.
    D. Jacquet, M. Morjean, Fission times of excited nuclei: an experimental overview. Prog. Part. Nucl. Phys. 63, 155–185 (2009). CrossRefGoogle Scholar
  20. 20.
    D. Fabris, G. Viesti, E. Fioretto et al., Excitation energy dependence of the fission probability in \(^{200}{{\text{ Pb }}}\) compound nuclei. Phys. Rev. Lett. 73, 2676 (1994). CrossRefGoogle Scholar
  21. 21.
    S.G. McCalla, J.P. Lestone, Fission decay widths for heavy-ion fusion–fission reactions. Phys. Rev. Lett. 101, 032702 (2008). CrossRefGoogle Scholar
  22. 22.
    J.L. Rodríguez-Sánchez, J. Benlliure, J. Taïeb et al., Presaddle and postsaddle dissipative effects in fission using complete kinematics measurements. Phys. Rev. C 94, 061601 (2016). CrossRefGoogle Scholar
  23. 23.
    J. Tian, W. Ye, Isospin effect on probing nuclear dissipation with fission cross sections. Phys. Rev. C 94, 021601(R) (2016). CrossRefGoogle Scholar
  24. 24.
    K.X. Jing, L.W. Phair, L.G. Moretto et al., Fission transient times from fission probabilities of neighboring isotopes. Phys. Lett. B 518, 221–228 (2001). CrossRefGoogle Scholar
  25. 25.
    R. Yanez, W. Loveland, L. Yao et al., Measurement of the survival probabilities for hot fusion reactions. Phys. Rev. Lett. 112, 152702 (2014). CrossRefGoogle Scholar
  26. 26.
    C. Schmitt, K. Mazurek, P.N. Nadtochy, Influence of fusion dynamics on fission observables: a multidimensional analysis. Phys. Rev. C 97, 014606 (2018). CrossRefGoogle Scholar
  27. 27.
    K. Mazurek, A. Szczurek, C. Schmitt et al., Dynamical evolution of spectator systems produced in ultrarelativistic heavy-ion collisions. Phys. Rev. C 97, 024604 (2018). CrossRefGoogle Scholar
  28. 28.
    K.T.R. Davies, A.J. Sierk, J.R. Nix, Effect of viscosity on the dynamics of fission. Phys. Rev. C 13, 2385–2403 (1976). CrossRefGoogle Scholar
  29. 29.
    A.J. Sierk, Macroscopic model of rotating nuclei. Phys. Rev. C 33, 2039–2053 (1986). CrossRefGoogle Scholar
  30. 30.
    A.V. Ignatyuk, M.G. Itkis, V.N. Okolovich et al., Fission of pre-actinide nuclei: excitation functions for the (\(\alpha, f\)) reaction. Sov. J. Nucl. Phys. 21, 612 (1975)Google Scholar
  31. 31.
    M. Blann, Decay of deformed and superdeformed nuclei formed in heavy ion reactions. Phys. Rev. C 21, 1770–1782 (1980). CrossRefGoogle Scholar
  32. 32.
    YuA Lazarev, I.I. Gontchar, N.D. Mavlitov, Long-lifetime fission component and Langevin fluctuation–dissipation dynamics of heavy-ion induced nuclear fission. Phys. Rev. Lett. 70, 1220–1223 (1993). CrossRefGoogle Scholar
  33. 33.
    D.J. Hinde, D. Hilscher, H. Rossner et al., Neutron emission as a probe of fusion–fission and quasifission dynamics. Phys. Rev. C 45, 1229–1259 (1992). CrossRefGoogle Scholar
  34. 34.
    W. Ye, N. Wang, Significant role of level-density parameters in probing nuclear dissipation with light-ion-induced fission excitation functions. Phys. Rev. C 87, 014610 (2013). CrossRefGoogle Scholar

Copyright information

© Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Chinese Nuclear Society, Science Press China and Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of PhysicsSoutheast UniversityNanjingChina

Personalised recommendations