Model-based cross section calculations on production of 43,34Sc, 45Ti, 51Cr, 54Mn, and 55Fe radioisotopes

Article
  • 48 Downloads

Abstract

A cross section database on excitation functions of reactions produced by charged particles is essential for many areas of nuclear research. Particularly, accurate knowledge on nuclear cross sections for the cyclotron production of radioisotopes is very important for nuclear medicine. In the present paper, the cross section calculations for the production of 43,44Sc, 45Ti, 51Cr, 54Mn, and 55Fe radioisotopes were carried out by the use of ALICE/ASH code using the Fermi gas model, Kataria Ramamurthy Fermi gas model, and superfluid nuclear model for nuclear level density. Thereby, these model calculations were compared with the available measured data.

Keywords

Radioisotope production Scandium-44 Chromium-51 Superfluid nuclear model Cross section 

References

  1. 1.
    F. Szelecsenyi, Measurement of cross sections of proton induced nuclear reactions on Ti, Ni, Zn, Cd, and Au up to 30 MeV and their application in radioisotope production, PhD Thesis (Lajos Kossuth University, Hungary) (1997)Google Scholar
  2. 2.
    S.M. Qaim, Radiochemical determination of nuclear data for theory and applications. J. Radioanal. Nucl. Chem. 284, 489 (2010).  https://doi.org/10.1007/s10967-010-0460-5 CrossRefGoogle Scholar
  3. 3.
    M. Yiǧit, New empirical formulae for (n,t) cross sections at 14.6 MeV. Appl. Radiat. Isot. 128, 307 (2017).  https://doi.org/10.1016/j.apradiso.2017.07.047 CrossRefGoogle Scholar
  4. 4.
    M. Yiğit, Theoretical predictions of excitation functions of neutron-induced reactions on 6Li, 9Be, 12C and 23Na nuclei at low energies. J. Fusion Energy 34, 140 (2015).  https://doi.org/10.1007/s10894-014-9773-7 CrossRefGoogle Scholar
  5. 5.
    J. Luo, C. Wu, L. Jiang, L. He, Cross sections for d-3H neutron interactions with samarium isotopes. Radiochim. Acta 104, 523 (2016).  https://doi.org/10.1515/ract-2016-0001 CrossRefGoogle Scholar
  6. 6.
    C. Yalçın, The cross section calculation of 112Sn(α, γ)116Te reaction with different nuclear models at the astrophysical energy range. Nucl. Sci. Tech. 28, 113 (2017).  https://doi.org/10.1007/s41365-017-0267-y CrossRefGoogle Scholar
  7. 7.
    M. Yiğit, E. Tel, Theoretical determination of (d, n) and (d,2n) excitation functions of some structural fusion materials irradiated by deuterons. Nucl. Sci. Tech. 28, 165 (2017).  https://doi.org/10.1007/s41365-017-0316-6 CrossRefGoogle Scholar
  8. 8.
    C.W. Ma, J.L. Xu, An empirical formula for isotopic yield in Fe + p spallation reactions. J. Phys. G Nucl. Part Phys. 44, 125101 (2017).  https://doi.org/10.1088/1361-6471/aa90e6 CrossRefGoogle Scholar
  9. 9.
    C.W. Ma, C.J. Lv, G.Q. Zhang et al., Neutron-induced reactions on AlF3 studied using the optical model. Nucl. Instrum. Methods Phys. Res. B 356–357, 42 (2015).  https://doi.org/10.1016/j.nimb.2015.04.060 CrossRefGoogle Scholar
  10. 10.
    C.J. Lv, C.W. Ma, Y.P. Liu, An investigation on γ induced activation reactions on human essential elements. Nucl. Sci. Tech. 26, 030503 (2015).  https://doi.org/10.13538/j.1001-8042/nst.26.030503 Google Scholar
  11. 11.
    IAEA. Proceedings of the IAEA Consultants, Meeting on nuclear data for medical radioisotope production, Tokyo (Japan) (1987). http://www-nds.iaea.org/. Accessed 19 June 2017
  12. 12.
    M. Yiğit, E. Tel, Nuclear model calculation for production of 18F, 22Na, 44,46Sc, 54Mn, 64Cu, 68Ga, 76Br and 90Y radionuclides used in medical applications. Ann. Nucl. Energy 69, 44 (2014).  https://doi.org/10.1016/j.anucene.2014.01.036 CrossRefGoogle Scholar
  13. 13.
    M.U. Khandaker, K. Kim, M.W. Lee et al., Investigations of the natTi(p, x) 43,44 m,44 g,46,47,48Sc, 48 V nuclear processes up to 40 MeV. Appl. Rad. Isot. 67, 1348 (2009).  https://doi.org/10.1016/j.apradiso.2009.02.030 CrossRefGoogle Scholar
  14. 14.
    E. Koumarianou, D. Pawlak, A. Korsak et al., Comparison of receptor affinity of natSc-DOTA-TATE versus natGa-DOTA-TATE. Nucl. Med. Rev. 14, 85 (2011).  https://doi.org/10.5603/NMR.2011.00021 CrossRefGoogle Scholar
  15. 15.
    F. Roesch, Scandium-44: benefits of a long-lived PET radionuclide available from the (44)Ti/(44)Sc generator system. Curr. Radiopharm. 5, 187 (2012).  https://doi.org/10.2174/1874471011205030187 CrossRefGoogle Scholar
  16. 16.
    M. Al-Abyad, I. Spahn, S.M. Qaim, Experimental studies and nuclear model calculations on proton induced reactions on manganese up to 45 MeV with reference to production of 55Fe, 54Mn and 51Cr. Appl. Rad. Isot. 68, 2393 (2010).  https://doi.org/10.1016/j.apradiso.2010.06.013 CrossRefGoogle Scholar
  17. 17.
    M. Sadeghi, M. Enferadib, H. Nadib, 45Ti, a candidate for positron emission tomography: study of the cyclotron production. Radiochemistry 53, 411 (2011).  https://doi.org/10.1134/S106636221104014X CrossRefGoogle Scholar
  18. 18.
    C.H.M. Broeders, A. Yu. Konobeyev, Yu. A. Korovin et al., FZK 7183, ALICE/ASH manual (2006). http://bibliothek.fzk.de/zb/berichte/FZKA7183.pdf. Accessed 19 June 2017
  19. 19.
    Experimental Nuclear Reaction Data (EXFOR), (2017). https://www-nds.iaea.org/exfor/exfor.htm. Accessed 19 June 2017
  20. 20.
    A.J. Koning, D. Rochman, J. Kopecky et al., TENDL-2015: TALYS-based evaluated nuclear data library. http://www.talys.eu/home/. Accessed 19 June 2017
  21. 21.
    M. Sadeghi, N. Soheibi, T. Kakavand et al., Targetry and nuclear data for the cyclotron production of 55Fe via various reactions. J. Radioanal. Nucl. Chem. 293, 1 (2012).  https://doi.org/10.1007/s10967-012-1719-9 CrossRefGoogle Scholar
  22. 22.
    M. Sadeghi, M. Enferadi, Nuclear model calculations on the production of 119Sb via various nuclear reactions. Ann. Nucl. Energy 38, 825 (2011).  https://doi.org/10.1016/j.anucene.2010.11.014 CrossRefGoogle Scholar
  23. 23.
    M. Sadeghi, N. Zandi, M. Bakhtiari, Nuclear model calculation for cyclotron production of 61Cu as a PET imaging. J. Radioanal. Nucl. Chem. 292, 777 (2012).  https://doi.org/10.1007/s10967-011-1557-1 CrossRefGoogle Scholar
  24. 24.
    M. Sadeghi, M. Bakhtiari, M.K. Bakht et al., Overview of mercury radionuclides and nuclear model calculations of 195Hgm, g and 197Hgm, g to evaluate experimental cross section data. Phys. Rev. C 85, 034605 (2012).  https://doi.org/10.1103/PhysRevC.85.034605 CrossRefGoogle Scholar
  25. 25.
    M. Sadeghi, M. Enferadi, M. Aref et al., Nuclear data for the cyclotron production of 66Ga, 86Y, 76Br, 64Cu and 43Sc in PET imaging. Nukleonika 55, 293 (2010)Google Scholar
  26. 26.
    M. Yiğit, Investigating the (p, n) excitation functions on 104–106,108,110Pd isotopes. Appl. Rad. Isot. 130, 109 (2017).  https://doi.org/10.1016/j.apradiso.2017.09.027 CrossRefGoogle Scholar
  27. 27.
    M. Yiğit, A. Kara, Model-based predictions for nuclear excitation functions of neutron-induced reactions on 64,66−68Zn targets. Nucl. Eng. Technol. 49, 996 (2017).  https://doi.org/10.1016/j.net.2017.03.006 CrossRefGoogle Scholar
  28. 28.
    M.E. Korkmaz, M. Yiğit, O. Ağar, Excitation functions of neutron induced nuclear reactions for 59Co nucleus using different level density models. Acta Phys. Pol. A 132, 670 (2017).  https://doi.org/10.12693/APhysPolA.132.670 CrossRefGoogle Scholar
  29. 29.
    M. Yiğit, E. Tel, Study on (n,2n) and (n, p) reactions of strontium nucleus. Nucl. Eng. Des. 293, 97 (2015).  https://doi.org/10.1016/j.nucengdes.2015.07.043 CrossRefGoogle Scholar
  30. 30.
    H. Korkut, T. Korkut, A. Kara et al., Monte carlo simulations of 17.9–22.3 MeV energetic proton irradiation effects on bcc-zirconium fusionic materials. J. Fusion Energ. 35, 591–596 (2016).  https://doi.org/10.1007/s10894-016-0068-z CrossRefGoogle Scholar
  31. 31.
    M. Yiğit, E. Tel, Theoretical study of deuteron induced reactions on 6,7Li, 9Be and 19F targets. Kerntechnik 79, 63 (2014).  https://doi.org/10.3139/124.110394 CrossRefGoogle Scholar
  32. 32.
    E. Tel, M. Yiğit, G. Tanır, Cross sections calculations of (d, t) nuclear reactions up to 50 MeV. J. Fusion Energy 32, 273 (2013).  https://doi.org/10.1007/s10894-012-9564-y CrossRefGoogle Scholar
  33. 33.
    V.F. Weisskopf, D.H. Ewing, On the yield of nuclear reactions with heavy elements. Phys. Rev. 57, 472 (1940).  https://doi.org/10.1103/PhysRev.57.472 CrossRefGoogle Scholar
  34. 34.
    M. Blann, Hybrid model for pre-equilibrium decay in nuclear reactions. Phys. Rev. Lett. 27, 337 (1971).  https://doi.org/10.1103/PhysRevLett.27.337 CrossRefGoogle Scholar
  35. 35.
    M. Blann, H.K. Vonach, Global test of modified pre-compound decay models. Phys. Rev. C 28, 1475 (1983).  https://doi.org/10.1103/PhysRevC.28.1475 CrossRefGoogle Scholar
  36. 36.
    A.V. Ignatyuk, G.M. Smirenkin, A. Tishin, Phenomenological description of energy dependence of the level density parameter. Sov. J. Nucl. Phys. 21, 255 (1975)Google Scholar
  37. 37.
    A.V. Ignatyuk, K.K. Istekov, G.N. Smirenkin, Role of collective effects in the systematics of nuclear level densities. Yadernaja Fizika 29, 875 (1979)Google Scholar
  38. 38.
    S.K. Kataria, V.S. Ramamurthy, M. Blann et al., Shell-dependent level densities in nuclear reaction codes. Nucl. Instrum. Methods Phys. Res. A 288, 585 (1990).  https://doi.org/10.1016/0168-9002(90)90155-Y CrossRefGoogle Scholar
  39. 39.
    V.N. Levkovskij, Book:Levkovskij, Act Cs. by Protons and Alphas (USSR, Moscow, 1991)Google Scholar
  40. 40.
    R. Ejnisman, I.D. Goldman, P.R. Pascholati et al., Cross sections for 45Sc(p,2n)44Ti and related reactions. Phys. Rev. C 54, 2047 (1996).  https://doi.org/10.1103/PhysRevC.54.2047 CrossRefGoogle Scholar
  41. 41.
    J.W. Meadows, R.M. Diamond, R.A. Sharp, Excitation functions and yield ratios for the isomeric pairs Br 80,80 m, Co58,58 m, and Sc44,44 m formed in (p, pn) reactions. Phys. Rev. 102, 190 (1956).  https://doi.org/10.1103/PhysRev.102.190 CrossRefGoogle Scholar
  42. 42.
    T. Mcgee, C.L. Rao, G.B. Saha et al., Nuclear interactions of 45Sc and 68Zn with protons of medium energy. Nucl. Phys. A 150, 11 (1970).  https://doi.org/10.1016/0375-9474(70)90451-3 CrossRefGoogle Scholar
  43. 43.
    A.J. Howard, H.B. Jensen, M. Rios et al., Measurement and theoretical analysis of some reaction rates of interest in silicon burning. Astrophys. J. 188, 131 (1974).  https://doi.org/10.1086/152694 CrossRefGoogle Scholar
  44. 44.
    R.G. Thomas, W. Bartolini, Excitation functions for (p, n) and (p,2n) interactions in Sc, Cr, Mo, Cd and W between 8 and 14 MeV. Nucl. Phys. A 106, 323 (1968).  https://doi.org/10.1016/0375-9474(67)90877-9 CrossRefGoogle Scholar
  45. 45.
    F. Ditroi, F. Tarkanyi, S. Takacs et al., Activation cross sections of longer lived products of proton induced nuclear reactions on manganese up to 70 MeV. Nucl. Instrum. Methods Phys. Res. B 308, 34 (2013).  https://doi.org/10.1016/j.nimb.2013.04.058 CrossRefGoogle Scholar
  46. 46.
    R. Michel, G. Brinkmann, On the depth-dependent production of radionuclides (44 ≤ A≤59) by solar protons in extraterrestrial matter. J. Radioanal. Nucl. Chem. 59, 467 (1980).  https://doi.org/10.1007/BF02517298 CrossRefGoogle Scholar
  47. 47.
    M. Gusakow, G. Albouy, N. Poffe et al., Reactions (p, pn) a moyenne energie. Journal de Physique 22, 636 (1961).  https://doi.org/10.1051/jphysrad:019610022010063600 CrossRefGoogle Scholar
  48. 48.
    R.C. Albert, (p, n) Cross section and proton optical-model parameters in the 4 to 5.5 MeV energy region. Phys. Rev. 115, 925 (1959).  https://doi.org/10.1103/PhysRev.115.925 CrossRefGoogle Scholar
  49. 49.
    C.H. Johnson, C.C. Trail, A. Galonsky, Thresholds for (p, n) reactions on 26 intermediate weight nuclei. Phys. Rev. 136, B1719 (1964).  https://doi.org/10.1103/PhysRev.136.B1719 CrossRefGoogle Scholar
  50. 50.
    G.F. Dell, W.D. Ploughe, H.J. Hausman, Total reaction cross sections in the mass range 45 to 65. Nucl. Phys. 64, 513 (1965).  https://doi.org/10.1016/0029-5582(65)90576-6 CrossRefGoogle Scholar

Copyright information

© Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Chinese Nuclear Society, Science Press China and Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of PhysicsAksaray UniversityAksarayTurkey

Personalised recommendations