Ω and ϕ production in Au + Au collisions at \(\sqrt{s_{_\mathrm{NN}}} = 11.5\)  and 7.7 GeV in a dynamical quark coalescence model

  • Xiao-Hai Jin
  • Jin-Hui Chen
  • Yu-Gang Ma
  • Song Zhang
  • Chun-Jian Zhang
  • Chen Zhong
Article
  • 52 Downloads

Abstract

The Ω and ϕ production in relativistic heavy-ion collisions is studied in a dynamical quark coalescence model using the phase space information of strange quarks from a multiphase transport (AMPT) model. Enhanced local parton density fluctuation is implemented in the AMPT to simulate the QCD phase transition dynamics. By studying the transverse momentum \(p_{\rm T}\) spectra and the elliptic flow of the multi-strangeness particles, such as Ω and ϕ, and the \(\Omega /\phi \) ratio as a function of \(p_{\rm T}\) in the AMPT, we find that the new development improves the description of experimental data. The study motivates further experimental investigations of Ω and ϕ production in phase II of the Beam Energy Scan program at RHIC.

Keywords

QCD phase transition Multi-strangeness particles Elliptic flow AMPT 

Notes

Acknowledgements

We are grateful to Dr. Zi-Wei Lin for the help to implement the local parton density fluctuation effect in AMPT model.

References

  1. 1.
    M.M. Aggarwal et al., arXiv:1007.2613
  2. 2.
    Y. Aoki, G. Endrodi, Z. Fodor et al., The order of the quantum chromodynamics transition predicted by the standard model of particle physics. Nature 443, 675 (2006).  https://doi.org/10.1038/nature05120 CrossRefGoogle Scholar
  3. 3.
    P. de Forcrand, O. Philipsen, The QCD phase diagram for small densities from imaginary chemical potential. Nucl. Phys. B 642, 290 (2002).  https://doi.org/10.1016/S0550-3213(02)00626-0 CrossRefMATHGoogle Scholar
  4. 4.
    Z. Fodor, S.D. Katz, Critical point of QCD at finite \(T\) and \(\mu \), lattice results for physical quark masses. J. High Energy Phys. 4, 50 (2004).  https://doi.org/10.1088/1126-6708/2004/04/050 CrossRefGoogle Scholar
  5. 5.
    G.Y. Shao, X.Y. Gao, Z.D. Tang et al., QCD phase diagram with the improved Polyakov loop effective potential. Nucl. Sci. Tech. 27, 151 (2016).  https://doi.org/10.1007/s41365-016-0152-0 CrossRefGoogle Scholar
  6. 6.
    L. Adamczyk et al. (STAR Collaboration), Energy dependence of moments of net-proton multiplicity distributions at RHIC. Phys. Rev. Lett. 112, 032302 (2014).  https://doi.org/10.1103/PhysRevLett.112.032302 CrossRefGoogle Scholar
  7. 7.
    L. Adamczyk et al. (STAR Collaboration), Beam energy dependence of moments of the net-charge multiplicity distributions in Au + Au collisions at RHIC. Phys. Rev. Lett. 113, 092301 (2014).  https://doi.org/10.1103/PhysRevLett.113.092301 CrossRefGoogle Scholar
  8. 8.
    L. Adamczyk et al. (STAR Collaboration), Energy dependence of \(K\pi \), \(p\pi \) and \(Kp\) fluctuations in Au + Au collisions from \(\sqrt{s_{_{\rm NN}}}\) = 7.7 to 200 GeV. Phys. Rev. C 92, 021901(R) (2015).  https://doi.org/10.1103/PhysRevC.92.021901 CrossRefGoogle Scholar
  9. 9.
    X.F. Luo, N. Xu, Search for the QCD critical point with fluctuations of conserved quantities in relativistic heavy-ion collisions at RHIC. Nucl. Sci. Tech. 28, 112 (2017).  https://doi.org/10.1007/s41365-017-0257-0 CrossRefGoogle Scholar
  10. 10.
    J. Steinhermer, J. Randrup, Spinodal density enhancements in simulations of relativistic nuclear collisions. Phys. Rev. C 87, 054903 (2013).  https://doi.org/10.1103/PhysRevC.87.054903 CrossRefGoogle Scholar
  11. 11.
    J. Steinhermer, J. Randrup, V. Koch, Non-equilibrium phase transition in relativistic nuclear collisions: Importance of the equation of state. Phys. Rev. C 89, 034901 (2014).  https://doi.org/10.1103/PhysRevC.89.034901 CrossRefGoogle Scholar
  12. 12.
    F. Li, C.M. Ko, Spinodal instabilities of baryon-rich quark-gluon plasma in the Polyakov–Nambu–Jona-Lasinio model. Phys. Rev. C 93, 035205 (2016).  https://doi.org/10.1103/PhysRevC.93.035205 CrossRefGoogle Scholar
  13. 13.
    C.M. Ko, F. Li, Density fluctuations in baryon-rich quark matter. Nucl. Sci. Tech. 27, 140 (2016).  https://doi.org/10.1007/s41365-016-0141-3 CrossRefGoogle Scholar
  14. 14.
    F. Li, C.M. Ko, Spinodal instabilities of baryon-rich quark matter in heavy ion collisions. Phys. Rev. C 95, 055203 (2017).  https://doi.org/10.1103/PhysRevC.95.055203 CrossRefGoogle Scholar
  15. 15.
    K.J. Sun, L.W. Chen, C.M. Ko et al., Probing QCD critical fluctuations from light nuclei production in relativistic heavy-ion collisions. Phys. Lett. B 774, 103 (2017).  https://doi.org/10.1016/j.physletb.2017.09.056 CrossRefGoogle Scholar
  16. 16.
    L. Adamczyk et al. (STAR Collaboration), Beam-energy dependence of the directed flow of protons, antiprotons, and pions in Au + Au collisions. Phys. Rev. Lett. 112, 162301 (2014).  https://doi.org/10.1103/PhysRevLett.112.162301 CrossRefGoogle Scholar
  17. 17.
    S.V. Afanasiev et al. (NA49 Collaboration), Energy dependence of pion and kaon production in central Pb + Pb collisions. Phys. Rev. C 66, 054902 (2002).  https://doi.org/10.1103/PhysRevC.66.054902 CrossRefGoogle Scholar
  18. 18.
    C. Alt et al. (NA49 Collaboration), Pion and kaon production in central Pb + Pb collisions at 20\(A\) and 30\(A\) GeV: evidence for the onset of deconfinement. Phys. Rev. C 77, 024903 (2008).  https://doi.org/10.1103/PhysRevC.77.024903 CrossRefGoogle Scholar
  19. 19.
    J. Adams et al. (STAR Collaboration), Scaling properties of hyperon production in Au + Au collisions at \(\sqrt{s_{_{\rm NN}}}\) = 200 GeV. Phys. Rev. Lett. 98, 062301 (2007).  https://doi.org/10.1103/PhysRevLett.98.062301 CrossRefGoogle Scholar
  20. 20.
    B.I. Abelev et al. (STAR Collaboration), Energy and system size dependence of ϕ meson production in Cu + Cu and Au + Au collisions. Phys. Lett. B 673, 183 (2009).  https://doi.org/10.1016/j.physletb.2009.02.037 CrossRefGoogle Scholar
  21. 21.
    B.I. Abelev et al. (STAR Collaboration), Observation of an antimatter hypernucleus. Science 328, 58 (2010).  https://doi.org/10.1126/science.1183980 CrossRefGoogle Scholar
  22. 22.
    S. Zhang, J.H. Chen, D. Keane et al., Searching for onset of deconfinement via hypernuclei and baryon-strangeness correlations. Phys. Lett. B 684, 224 (2010).  https://doi.org/10.1016/j.physletb.2010.01.034 CrossRefGoogle Scholar
  23. 23.
    P. Liu, J.H. Chen, Y.G. Ma et al., Production of light nuclei and hypernuclei at high intensity accelerator facility energy region. Nucl. Sci. Tech. 28, 55 (2017).  https://doi.org/10.1007/s41365-017-0207-x CrossRefGoogle Scholar
  24. 24.
    K. Hattori, X.G. Huang, Novel quantum phenomena induced by strong magnetic fields in heavy-ion collisions. Nucl. Sci. Tech. 28, 26 (2017).  https://doi.org/10.1007/s41365-016-0178-3 CrossRefGoogle Scholar
  25. 25.
    J. Tian, J.H. Chen, Y.G. Ma et al., Breaking of the number-of-constituent-quark scaling for identified-particle elliptic flow as a signal of phase change in low-energy data taken at the BNL Relativistic Heavy Ion Collider (RHIC). Phys. Rev. C 79, 067901 (2009).  https://doi.org/10.1103/PhysRevC.79.067901 CrossRefGoogle Scholar
  26. 26.
    L. Adamczyk et al. (STAR Collaboration), Observation of an energy-dependent difference in elliptic flow between particles and antiparticles in relativistic heavy ion collisions. Phys. Rev. Lett. 110, 142301 (2013).  https://doi.org/10.1103/PhysRevLett.110.142301 CrossRefGoogle Scholar
  27. 27.
    L. Adamczyk et al. (STAR Collaboration), Centrality and transverse momentum dependence of elliptic flow of multistrange hadrons and ϕ meson in Au + Au collisions at \(\sqrt{s_{_{\rm NN}}}\) = 200 GeV. Phys. Rev. Lett. 116, 062301 (2016).  https://doi.org/10.1103/PhysRevLett.116.062301 CrossRefGoogle Scholar
  28. 28.
    L. Adamczyk et al. (STAR Collaboration), Probing parton dynamics of QCD matter with Ω and ϕ production. Phys. Rev. C 93, 021903(R) (2016).  https://doi.org/10.1103/PhysRevC.93.021903 CrossRefGoogle Scholar
  29. 29.
    J.H. Chen, F. Jin, D. Gangadharan et al., Parton distributions at hadronization from bulk dense matter produced in Au + Au collisions at \(\sqrt{s_{\rm NN}}\) = 200 GeV. Phys. Rev. C 78, 034907 (2008).  https://doi.org/10.1103/PhysRevC.78.034907 CrossRefGoogle Scholar
  30. 30.
    Y.J. Ye, J.H. Chen, Y.G. Ma et al., Ω and ϕ in Au + Au collisions at \(\sqrt{s_{_{\rm NN}}}\) = 200 and 11.5 GeV from a multiphase transport model. Chin. Phys. C 41, 084101 (2017).  https://doi.org/10.1088/1674-1137/41/8/084101 CrossRefGoogle Scholar
  31. 31.
    H. van Hecke, H. Sorge, N. Xu, Evidence of early multistrange hadron freeze-out in high energy nuclear collisions. Phys. Rev. Lett. 81, 5764 (1998).  https://doi.org/10.1103/PhysRevLett.81.5764 CrossRefGoogle Scholar
  32. 32.
    A. Shor, ϕ-Meson production as a probe of the quark-gluon plasma. Phys. Rev. Lett. 54, 1122 (1985).  https://doi.org/10.1103/PhysRevLett.54.1122 CrossRefGoogle Scholar
  33. 33.
    Y.C. He, Z.W. Lin, Improved quark coalescence for a multi-phase transport model. Phys. Rev. C 96, 014910 (2017).  https://doi.org/10.1103/PhysRevC.96.014910 CrossRefGoogle Scholar
  34. 34.
    L.W. Chen, C.M. Ko, ϕ and Ω production in relativistic heavy-ion collisions in a dynamical quark coalescence model. Phys. Rev. C 73, 044903 (2006).  https://doi.org/10.1103/PhysRevC.73.044903 CrossRefGoogle Scholar
  35. 35.
    C.M. Ko, Transport model studies of the baryon-rich quark-gluon plasma formed in heavy ion collisions. PoS CPOD 2009 (2009), p. 034.  https://doi.org/10.22323/1.071.0034
  36. 36.
    Z.W. Lin, C.M. Ko, B.A. Li et al., Multiphase transport model for relativistic heavy ion collisions. Phys. Rev. C 72, 064901 (2005).  https://doi.org/10.1103/PhysRevC.72.064901 CrossRefGoogle Scholar
  37. 37.
    A. Bzdak, G.L. Ma, Elliptic and triangular flow in \(p\)-Pb and peripheral Pb–Pb collisions from parton scatterings. Phys. Rev. Lett. 113, 252301 (2014).  https://doi.org/10.1103/PhysRevLett.113.252301 CrossRefGoogle Scholar
  38. 38.
    Z.W. Lin, Evolution of transverse flow and effective temperatures in the parton phase from a multiphase transport model. Phys. Rev. C 90, 014904 (2014).  https://doi.org/10.1103/PhysRevC.90.014904 CrossRefGoogle Scholar
  39. 39.
    Z.W. Lin, C.M. Ko, S. Pal, Partonic effects on pion interferometry at the relativistic heavy-ion collider. Phys. Rev. Lett. 89, 152301 (2002).  https://doi.org/10.1103/PhysRevLett.89.152301 CrossRefGoogle Scholar
  40. 40.
    X.N. Wang, Role of multiple minijets in high-energy hadronic reactions. Phys. Rev. D 43, 104 (1991).  https://doi.org/10.1103/PhysRevD.43.104 CrossRefGoogle Scholar
  41. 41.
    X.N. Wang, M. Gyulassy, HIJING: a Monte Carlo model for multiple jet production in pp, pA, and AA collisions. Phys. Rev. D 44, 3501 (1991).  https://doi.org/10.1103/PhysRevD.44.3501 CrossRefGoogle Scholar
  42. 42.
    B. Zhang, ZPC 1.0.1: a parton cascade for ultrarelativistic heavy ion collisions. Comput. Phys. Commun. 109, 193 (1998).  https://doi.org/10.1016/S0010-4655(98)00010-1 CrossRefMATHGoogle Scholar
  43. 43.
    B.A. Li, C.M. Ko, Formation of superdense hadronic matter in high energy heavy-ion collisions. Phys. Rev. C 52, 2037 (1995).  https://doi.org/10.1103/PhysRevC.52.2037 CrossRefGoogle Scholar
  44. 44.
    B.A. Li, A.T. Sustich, B. Zhang et al., Studies of superdense hadronic matter in a relativistic transport model. Int. J. Mod. Phys. E 10, 267 (2001).  https://doi.org/10.1142/S0218301301000575 CrossRefGoogle Scholar
  45. 45.
    Z.W. Lin, C.M. Ko, Partonic effects on the elliptic flow at relativistic heavy ion collisions. Phys. Rev. C 65, 034904 (2002).  https://doi.org/10.1103/PhysRevC.65.034904 CrossRefGoogle Scholar
  46. 46.
    R. Mattiello, A. Jahns, H. Sorge, H. Stocker, W. Greiner, Deuteron flow in ultrarelativistic heavy ion reactions. Phys. Rev. Lett. 74, 2180 (1995).  https://doi.org/10.1103/PhysRevLett.74.2180 CrossRefGoogle Scholar
  47. 47.
    J. Ollitrault, Flow systematics from SIS to SPS energies. Nucl. Phys. A 638, 195 (1998).  https://doi.org/10.1016/S0375-9474(98)00413-8 CrossRefGoogle Scholar
  48. 48.
    U. Heinz, R. Snellings, Collective flow and viscosity in relativistic heavy-ion collisions. Annu. Rev. Nucl. Part. Sci. 63, 123 (2013).  https://doi.org/10.1146/annurev-nucl-102212-170540 CrossRefGoogle Scholar
  49. 49.
    L. Ma, G.L. Ma, Y.G. Ma, Anisotropic flow and flow fluctuations for Au + Au at \(\sqrt{s_{_{\rm NN}}}\) = 200 GeV in a multiphase transport model. Phys. Rev. C 89, 044907 (2014).  https://doi.org/10.1103/PhysRevC.89.044907 CrossRefGoogle Scholar
  50. 50.
    L. Adamczyk et al. (STAR Collaboration), Centrality dependence of identified particle elliptic flow in relativistic heavy ion collisions at \(\sqrt{s_{_{\rm NN}}}\) = 7.7–62.4 GeV. Phys. Rev. C 93, 014907 (2016).  https://doi.org/10.1103/PhysRevC.93.014907 CrossRefGoogle Scholar
  51. 51.
    B. Alver, G. Roland, Collision-geometry fluctuations and triangular flow in heavy-ion collisions. Phys. Rev. C 81, 054905, 2010.  https://doi.org/10.1103/PhysRevC.81.054905; Erratum: Collision-geometry fluctuations and triangular flow in heavy-ion collisions. Phys. Rev. C 82, 039903 (2010).  https://doi.org/10.1103/PhysRevC.82.039903
  52. 52.
    S. Zhang, Y.G. Ma, J.H. Chen et al., Nuclear cluster structure effect on elliptic and triangular flows in heavy-ion collisions. Phys. Rev. C 95, 064904 (2017).  https://doi.org/10.1103/PhysRevC.95.064904 CrossRefGoogle Scholar

Copyright information

© Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Chinese Nuclear Society, Science Press China and Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Xiao-Hai Jin
    • 1
    • 2
  • Jin-Hui Chen
    • 1
  • Yu-Gang Ma
    • 1
    • 3
  • Song Zhang
    • 1
  • Chun-Jian Zhang
    • 1
    • 2
  • Chen Zhong
    • 1
  1. 1.Shanghai Institute of Applied PhysicsChinese Academy of SciencesShanghaiChina
  2. 2.University of Chinese Academy of SciencesBeijingChina
  3. 3.ShanghaiTech UniversityShanghaiChina

Personalised recommendations