Readout electronics of a prototype time-of-flight ion composition analyzer for space plasma

  • Di Yang
  • Zhe Cao
  • Xin-Jun Hao
  • Yi-Ren Li
  • Shu-Bin Liu
  • Chang-Qing Feng
  • Qi An


Readout electronics is developed for a prototype time-of-flight (TOF) ion composition spectrometer for in situ measurement of the mass/charge distributions of major ion species from 200 to 100 keV/e in space plasma. By utilizing a constant fraction discriminator (CFD) and time-to-digital converter (TDC), challenging dynamic range measurements were performed with high time resolution and event rates. CFD was employed to discriminate the TOF signals from the micro-channel plate and channel electron multipliers. TDC based on the combination of counter and OR-gate delay chain was designed in a high-reliability flash field programmable gate array. Owing to the non-uniformity of the delay chain, a correction algorithm based on integral nonlinearity compensation was implemented to reduce the time uncertainty. The test results showed that the electronics achieved a low timing error of < 200 ps in the input range from 35 to 500 mV for the CFD, and a time resolution of ~ 550 ps with time uncertainty < 180 ps after correction and a time range of 6.4 μs for the TDC. The TOF spectrum from an electron beam experiment of the impacting N2 gas further indicated the good performance of this readout electronic.


Space plasma Ion composition analyzer Readout electronics Constant fraction discriminator Time-to-digital converter 



The authors are grateful for the help and discussion of collaboration teams from Hefei National Laboratory for Physical Sciences at Microscale and CAS Key Laboratory of Geospace Environment (USTC).


  1. 1.
    D.T. Young, B.L. Barraclough, D.J. McComas et al., CRRES low-energy magnetospheric ion composition sensor. J. Spacecr. Rockets 29, 596–598 (1992). CrossRefGoogle Scholar
  2. 2.
    R. Lundin, S. Barabash, H. Andersson et al., Solar wind-induced atmospheric erosion at Mars: first results from ASPERA-3 on Mars Express. Science 305(5692), 1933–1936 (2004). CrossRefGoogle Scholar
  3. 3.
    S.M. Curry, J.G. Luhmann, Y.J. Ma et al., Response of Mars O+ pickup ions to the 8 March 2015 ICME: inferences from MAVEN data-based models. Geophys. Res. Lett. 42, 9095–9102 (2015). CrossRefGoogle Scholar
  4. 4.
    D.M. Klumpar, E. Möbius, L. M. Kistler et al, in The FAST Mission, ed. by R.F. Pfaff Jr. (Springer, Amsterdam, 2001), pp. 197–219CrossRefGoogle Scholar
  5. 5.
    A.B. Galvin, L.M. Kistler, M.A. Popecki et al., The plasma and suprathermal ion composition (PLASTIC) investigation on the STEREO observatories. Space Sci. Rev. 136, 437–486 (2008). CrossRefGoogle Scholar
  6. 6.
    J.P. McFadden, O. Kortmann, D. Curtis et al., MAVEN suprathermal and thermal ion composition (STATIC) instrument. Space Sci. Rev. 195(1), 199–256 (2015). CrossRefGoogle Scholar
  7. 7.
    J.S. Halekas, E.R. Taylor, G. Dalton et al., The solar wind ion analyzer for MAVEN. Space Sci. Rev. 195, 125–151 (2015). CrossRefGoogle Scholar
  8. 8.
    J.E. Nordholt, J.J. Berthelier, D.M. Burr et al., Measurement Techniques, in Space Plasmas: Particles, ed. by R.F. Pfaff, J.E. Borovsky, D.T. Young (American Geophysical Union, Washington, DC, 1998), pp. 209–214Google Scholar
  9. 9.
    E. Möbius, L.M. Kistler, M.A. Popecki et al., Measurement Techniques, in Space Plasmas: Particles, ed. by R.F. Pfaff, J.E. Borovsky, D.T. Young (American Geophysical Union, Washington, DC, 1998), pp. 243–248Google Scholar
  10. 10.
    F.M. Yang, P.C. Huang, W.Z. Chen et al., Progress on laser time transfer project, in Paper Presented at 15th International Workshop on Laser Ranging (Canberra, 15–20 October 2006)Google Scholar
  11. 11.
    W. Hsiong, S. Huntzicker, K. King et al., Performance and area tradeoffs in space-qualified FPGA-based time-of-flight systems, in Paper Presented at the 9th International Conference on Electronic Measurement and Instruments (Beihang University, Beijing, 16–19 August 2009)Google Scholar
  12. 12.
    X. Qin, C.Q. Feng, D.L. Zhang et al., Development of a high resolution TDC for implementation in flash-based and anti-fuse FPGAs for aerospace application. IEEE Trans. Nucl. Sci. 60, 3550–3556 (2013). CrossRefGoogle Scholar
  13. 13.
    H.O. Funsten, R.M. Skoug, A.A. Guthrie et al., Helium, oxygen, proton, and electron (HOPE) mass spectrometer for the radiation belt storm probes mission. Space Sci. Rev. 179, 423–484 (2013). CrossRefGoogle Scholar
  14. 14.
    Q. Shen, The research on high resolution time to digital conversion for quantum communication (Ph.D. Thesis, University of Science and Technology of China, 2013)Google Scholar
  15. 15.
    N. Paschalidis, N. Stamatopoulos, K. Karadamoglou et al., A time-of-flight system on a chip suitable for space instrumentation, in Paper Presented at the 2001 IEEE Nuclear Science Symposium Conference Record (San Diego, 4–10 November 2001)Google Scholar
  16. 16.
    J.J. Wang, Radiation effects in FPGAs, in Paper Presented at the Proceedings of the 9th Workshop on Electronics for LHC Experiments (Amsterdam, 29 Sept–3 Oct 2003)Google Scholar
  17. 17.
    D. Yang, Z. Cao, X. Qin et al., Readout electronics of a prototype spectrometer for measuring low-energy ions in solar wind plasma. Nucl. Sci. Technol. 27, 135 (2016). CrossRefGoogle Scholar
  18. 18.
    S.B. Liu, C.Q. Feng, H. Yan et al., LUT-based non-linearity compensation for BES III TOF’s time measurement. Nucl. Sci. Technol. 21, 49–53 (2010). Google Scholar
  19. 19.
    A121 hybrid charge sensitive preamplifier, discriminator, and pulse shaper (Amptek Inc., USA). Accessed 12 Sept 2015
  20. 20.
    R.H. Maurer, M.E. Fraeman, M.N. Martin et al., Harsh environments: space radiation environment, effects, and mitigation. J. Hopkins APL Tech. D 28, 17 (2008)Google Scholar
  21. 21.
    X. Qin, C.Q. Feng, D.L. Zhang et al., A low dead time vernier delay line TDC implemented in an actel flash-based FPGA. Nucl. Sci. Technol. 24, 040403 (2013). Google Scholar
  22. 22.
    R. Pelka, J. Kalisz, R. Szplet, Nonlinearity correction of the integrated time-to-digital converter with direct coding. IEEE Trans. Instrum. Meas. 46, 449–453 (1997). CrossRefGoogle Scholar
  23. 23.
    E.L. Wang, X. Shan, Y.F. Shi et al., Momentum imaging spectrometer for molecular fragmentation dynamics induced by pulsed electron beam. Rev. Sci. Instrum. 84, 123110 (2013). CrossRefGoogle Scholar
  24. 24.
    G.M. Mason, R.E. Gold, S.M. Krimigis et al., The ultra-low-energy isotope spectrometer (ULEIS) for the ACE spacecraft. Space Sci. Rev. 86, 409–448 (1998). CrossRefGoogle Scholar
  25. 25.
    G. Gloeckler, K.C. Hsieh, Time-of-flight technique for particle identification at energies from 2–400 keV/nucleon. Nucl. Instrum Methods 165, 537–544 (1979). CrossRefGoogle Scholar
  26. 26.
    D.T. Young, J.J. Berthelier, M. Blanc et al., Cassini plasma spectrometer investigation. Space Sci. Rev. 114, 1–112 (2004). CrossRefGoogle Scholar
  27. 27.
    H.C. Straub, P. Renault, B.G. Lindsay et al., Absolute partial cross sections for electron-impact ionization of H2, N2, and O2 from threshold to 1000 eV. Phys. Rev. A 54, 2146 (1996). CrossRefGoogle Scholar

Copyright information

© Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Chinese Nuclear Society, Science Press China and Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Di Yang
    • 1
    • 2
  • Zhe Cao
    • 1
    • 2
  • Xin-Jun Hao
    • 3
    • 4
  • Yi-Ren Li
    • 3
    • 4
  • Shu-Bin Liu
    • 1
    • 2
  • Chang-Qing Feng
    • 1
    • 2
  • Qi An
    • 1
    • 2
  1. 1.State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of ChinaHefeiChina
  2. 2.Department of Modern PhysicsUniversity of Science and Technology of ChinaHefeiChina
  3. 3.Division of Space PhysicsUniversity of Science and Technology of ChinaHefeiChina
  4. 4.CAS Key Laboratory of Geospace EnvironmentHefeiChina

Personalised recommendations