Transition toward thorium fuel cycle in a molten salt reactor by using plutonium

  • De-Yang Cui
  • Shao-Peng Xia
  • Xiao-Xiao Li
  • Xiang-Zhou CaiEmail author
  • Jin-Gen ChenEmail author


The molten salt reactor (MSR), as one of the Generation IV advanced nuclear systems, has attracted a worldwide interest due to its excellent performances in safety, economics, sustainability, and proliferation resistance. The aim of this work is to provide and evaluate possible solutions to fissile \(^{233} \hbox {U}\) production and further the fuel transition to thorium fuel cycle in a thermal MSR by using plutonium partitioned from light water reactors spent fuel. By using an in-house developed tool, a breeding and burning (B&B) scenario is first introduced and analyzed from the aspects of the evolution of main nuclides, net \(^{233} \hbox {U}\) production, spectrum shift, and temperature feedback coefficient. It can be concluded that such a Th/Pu to \(\hbox {Th}/^{233} \hbox {U}\) transition can be accomplished by employing a relatively fast fuel reprocessing with a cycle time less than 60 days. At the equilibrium state, the reactor can achieve a conversion ratio of about 0.996 for the 60-day reprocessing period (RP) case and about 1.047 for the 10-day RP case. The results also show that it is difficult to accomplish such a fuel transition with limited reprocessing (RP is 180 days), and the reactor operates as a converter and burns the plutonium with the help of thorium. Meanwhile, a pre-breeding and burning (PB&B) scenario is also analyzed briefly with respect to the net \(^{233} \hbox {U}\) production and evolution of main nuclides. One can find that it is more efficient to produce \(^{233} \hbox {U}\) under this scenario, resulting in a double time varying from about 1.96 years for the 10-day RP case to about 6.15 years for the 180-day RP case.


Molten salt reactor Thorium fuel cycle Plutonium Reprocessing 


  1. 1.
    T. Kamei, S. Hakami, Evaluation of implementation of thorium fuel cycle with LWR and MSR. Prog. Nucl. Energy 53, 820–824 (2011). doi: 10.1016/j.pnucene.2011.05.032 CrossRefGoogle Scholar
  2. 2.
    D. LeBlanc, Too good to leave on the shelf. Mech. Eng. 132, 28–33 (2010)Google Scholar
  3. 3.
    M.W. Rosenthal, P.R. Kasten, R.B. Briggs et al., Molten-salt reactors-history, status, and potential. Nucl. Technol. 8, 107–117 (1970)Google Scholar
  4. 4.
    D. LeBlanc, Molten salt reactors: a new beginning for an old idea. Nucl. Eng. Des. 240, 1644–1656 (2010). doi: 10.1016/j.nucengdes.2009.12.033 CrossRefGoogle Scholar
  5. 5.
    G.C. Li, Y. Zou, C.G. Yu et al., Influences of 7Li enrichment on Th–U fuel breeding for an Improved Molten Salt Fast Reactor (IMSFR). Nucl. Sci. Tech. 28, 97 (2017). doi: 10.1007/s41365-017-0250-7 CrossRefGoogle Scholar
  6. 6.
    J. Křepel, B. Hombourger, C. Fiorina et al., Fuel cycle advantages and dynamics features of liquid fueled MSR. Ann. Nucl. Energy 64, 380–397 (2014). doi: 10.1016/j.anucene.2013.08.007 CrossRefGoogle Scholar
  7. 7.
    M.S. Cheng, Z.M. Dai, Development of a three dimension multi-physics code for molten salt fast reactor. Nucl. Sci. Tech. 25, 010601 (2014). doi: 10.13538/j.1001-8042/nst.25.010601 Google Scholar
  8. 8.
    A. Nuttin, D. Heuer, A. Billebaud et al., Potential of thorium molten salt reactors detailed calculations and concept evolution with a view to large scale energy production. Prog. Nucl. Energy 46, 77–99 (2005). doi: 10.1016/j.pnucene.2004.11.001 CrossRefGoogle Scholar
  9. 9.
    Z.H. Zhang, X.B. Xia, J. Cai et al., Simulation of radiation dose distribution and thermal analysis for the bulk shielding of an optimized molten salt reactor. Nucl. Sci. Tech. 26, 040603 (2015). doi: 10.13538/j.1001-8042/nst.26.040603 Google Scholar
  10. 10.
    J.X. Zuo, J.P. Jing, J.S. Bi et al., Framework analysis of fluoride salt-cooled high temperature reactor probabilistic safety assessment. Nucl. Sci. Tech. 26, 050602 (2015). doi: 10.13538/j.1001-8042/nst.26.050602 Google Scholar
  11. 11.
    J. Serp, M. Allibert, O. Beneš et al., The molten salt reactor (MSR) in generation IV: overview and perspectives. Prog. Nucl. Energy 77, 308–319 (2014). doi: 10.1016/j.pnucene.2014.02.014 CrossRefGoogle Scholar
  12. 12.
    X.W. Lyu, X.B. Xia, Z.H. Zhang et al., Analysis of tritium production in a 2 MW liquid-fueled molten salt experimental reactor and its environmental impact. Nucl. Sci. Tech. 27, 78 (2016). doi: 10.1007/s41365-016-0100-z CrossRefGoogle Scholar
  13. 13.
    OECD, Introduction of Thorium in the Nuclear Fuel Cycle. OECD Publishing NEA No. 7224 (2015). doi: 10.1787/9789264241732-en
  14. 14.
    J.R. Engel, W.R. Grimes, H.F. Bauman et al., Conceptual design characteristics of a denatured molten-salt reactor with once-through fueling. Prog. Rep., ORNL-TM-7207 (1980)Google Scholar
  15. 15.
    B.R. Betzler, J.J. Powers, A. Worrall et al., Two-Dimensional Neutronic and Fuel Cycle Analysis of the Transatomic Power Molten Salt Reactor. ORNL/TM-2016/742 (2017). doi: 10.2172/1340461
  16. 16.
    OECD, Nuclear Fuel Cycle Transition Scenario Studies. NEA No. 6194 (2009). doi: 10.1787/9789264107083-en
  17. 17.
    R.S. Robertson, Conceptual Design Study of a Single-Fluid Molten Salt Breeder Reactor. Prog. Rep., ORNL-4541 (1971)Google Scholar
  18. 18.
    A.M. Perry, H.F. Bauman, Reactor physics and fuel-cycle analyses. Nucl. Technol. 8, 208–219 (1970)Google Scholar
  19. 19.
    K. Mitachi, Y. Yamana, T. Suzuki et al., Neutronic Examination on Plutonium Transmutation by a Small Molten-salt Fission Power Station. A section in IAEA-TECDOC-840 (1995)Google Scholar
  20. 20.
    E. Merle-Lucotte, D. Heuer, C. Le Brun et al., Fast thorium molten salt reactors started with plutonium. ICAPP’06: International Congress on Advances in Nuclear Power Plants (2006)Google Scholar
  21. 21.
    D. Heuer, E. Merle-Lucotte, M. Allibert et al., Towards the thorium fuel cycle with molten salt fast reactors. Ann. Nucl. Energy 64, 421–429 (2014). doi: 10.1016/j.anucene.2013.08.002 CrossRefGoogle Scholar
  22. 22.
    L. Mathieu, D. Heuer, E. Merle-Lucotte et al., Possible configurations for the thorium molten salt reactor and advantages of the fast non-moderated version. Nucl. Sci. Eng. 161, 78–89 (2009). doi: 10.13182/NSE07-49 CrossRefGoogle Scholar
  23. 23.
    V. Ignatiev, O. Feynberg, A. Merzlyakov et al., Progress in development of MOSART concept with Th support. Proceedings of ICAPP 2012, Paper 12394 Chicago, USA. (2012)Google Scholar
  24. 24.
    C.Y. Zou, X.Z. Cai, D.Z. Jiang et al., Optimization of temperature coefficient and breeding ratio for a graphite-moderated molten salt reactor. Nucl. Eng. Des. 281, 114–120 (2015). doi: 10.1016/j.nucengdes.2014.11.022 CrossRefGoogle Scholar
  25. 25.
    C.G. Yu, X.X. Li, X.Z. Cai et al., Analysis of minor actinides transmutation for a Molten Salt Fast Reactor. Ann. Nucl. Energy 85, 597–604 (2015). doi: 10.1016/j.anucene.2015.06.014 CrossRefGoogle Scholar
  26. 26.
    ORNL, Scale: A Comprehensive Modeling and Simulation Suite for Nuclear Safety Analysis and Design. ORNL/TM-2005/39 (2011)Google Scholar
  27. 27.
    M.W. Rosenthal, R.B. Briggs, P.N. Haubenreich, Molten salt reactor program semiannual progress report For Period Ending August 31,1971. ORNL-4728 (1971)Google Scholar
  28. 28.
    T. Yokoo, T. Inoue, Mass Balance of the Pu and Minor Actinides Recycling Metal Fuel System. Fifth OECD/NEA Information Exchange Meeting on Actinide and Fission Product Partitioning and Transmutation (1998)Google Scholar
  29. 29.
    S.M. Bowman, KENO-VI Primer: A Primer for Criticality Calculations with SCALE/KENO-VI Using GeeWiz. ORNL/TM-2008/069 (2008)Google Scholar
  30. 30.
    M.W. Rosenthal, R. B. Briggs, P. R. Kasten, Molten salt reactor program semiannual progress report For Period Ending February 28,1970. Prog. Rep. , ORNL-4548 (1970)Google Scholar

Copyright information

© Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Chinese Nuclear Society, Science Press China and Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.Shanghai Institute of Applied PhysicsChinese Academy of SciencesShanghaiChina
  2. 2.CAS Innovative Academies in TMSR Energy SystemChinese Academy of SciencesShanghaiChina
  3. 3.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations