Skip to main content
Log in

Design of a NIM-based DAQ system

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

In order to satisfy the requirements of beam measurement in the heavy ion medical machine and other small nuclear physics experiments, we designed and built a nuclear instrumentation module-based data acquisition system. This is composed of a set of functional modules and a purpose-built bus. One of the modules operates as a master, collecting data from the other slave modules. It then sends the data to the back-end computer via Ethernet. In addition to the hardware, dedicated software has been designed and implemented. In this paper, we provide a detailed description of the architecture of the system, the data frame, and the software. The bus is the central part of the system. It can transmit data from the slave modules to the master at 33 MB/s. The frame used to transmit the data also ensures its integrity and monitors the hardware architecture. The client software is designed to process data in real time and store data on a hard disk for later analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. J.C. Yang, J. Shi, W.P. Chai et al., Design of a compact structure cancer therapy synchrotron. Nucl. Instrum. Methods A 756, 19–22 (2014). doi:10.1016/j.nima.2014.04.050

    Article  Google Scholar 

  2. M. Li, Y.J. Yuan, R.S. Mao et al., The control system of the multi-strip ionization chamber for the HIMM. Nucl. Instrum. Methods A 776, 21–26 (2015). doi:10.1016/j.nima.2014.12.021

    Article  Google Scholar 

  3. W. Chai, J. Yang, J. Xia et al., Stripping accumulation and optimization of HIMM synchrotron. Nucl. Instrum. Methods A 763, 272–277 (2014). doi:10.1016/j.nima.2014.05.117

    Article  Google Scholar 

  4. M. Bhuyan, V.B. Chandratre, S. Dasgupta et al., VME-based data acquisition system for the India-based Neutrino Observatory prototype detector. Nucl. Instrum. Methods A 661, S73–S76 (2012). doi:10.1016/j.nima.2010.08.075

    Article  Google Scholar 

  5. Y. Chen, F. Wang, S. Li et al., Application of HDF5 in long-pulse quasi-steady state data acquisition at high sampling rate. Fusion Eng. Des. 89, 721–725 (2014). doi:10.1016/j.fusengdes.2013.12.048

    Article  Google Scholar 

  6. J. Kong, H. Su, Z.-Q. Chen et al., Development of multi-channel gated integrator and PXI-DAQ system for nuclear detector arrays. Nucl. Instrum. Methods A 622, 215–218 (2010). doi:10.1016/j.nima.2010.07.030

    Article  Google Scholar 

  7. M. Tecchio, J. Ameel, M. Bogdan et al., The data acquisition system for the KOTO detector. Phys. Proc. 37, 1940–1947 (2012). doi:10.1016/j.phpro.2012.02.523

    Article  Google Scholar 

  8. S.-H. Seo, J.S. Hong, M. Kwon, CAMAC, VXI, and PXI hybrid data acquisition system with MDSplus. Fusion Eng. Des. 71, 141–144 (2004). doi:10.1016/j.fusengdes.2004.04.025

    Article  Google Scholar 

  9. C. Li, J. Wang, K. Xuan et al., Event-driven timing system based on MRF cPCI hardware for HLS-II. Nucl. Sci. Tech. 26, 060401 (2015). doi:10.13538/j.1001-8042/nst.26.060401

    Google Scholar 

  10. F.J. Ferrero Martín, M. Valledor Llopis, J.C. Campo Rodríguez et al., Low-cost open-source multifunction data acquisition system for accurate measurements. Measurement 55, 265–271 (2014). doi:10.1016/j.measurement.2014.05.010

    Article  Google Scholar 

  11. C. He, L. Ma, Y. Wu, et al. in Application of VI Technology in DSO Measurement System with GPIB Interface, Computational Intelligence and Virtual Environments for Measurement Systems and Applications (CIVEMSA), Shenzhen, China, 12–14 June 2015

  12. G. Liu, Q. Kong, Design of virtual oscilloscope based on GPIB interface and SCPI, in The 11th IEEE International Conference on Electronic Measurement and Instruments, HarBin, China, 16–19 Aug 2013

  13. A. Wang, Y. Liu, Interface design of GPIB based on ARM RISC microprocessor, electronic measurement and instruments (ICEMI), in 2013 IEEE 11th International Conference, Nanjing, China, 27–29 June 2013

  14. M. Battaglia, D. Bisello, D. Contarato et al., A DAQ system for pixel detectors R&D. Nucl. Instrum. Methods A 611, 105–110 (2009). doi:10.1016/j.nima.2009.09.008

    Article  Google Scholar 

  15. A. Balzer, M. Füßling, M. Gajdus et al., The H.E.S.S. central data acquisition system. Astropart. Phys. 54, 67–80 (2014). doi:10.1016/j.astropartphys.2013.11.007

    Article  Google Scholar 

  16. G.A. Cox, E. Armengaud, C. Augier et al., A multi-tiered data structure and process management system based on ROOT and CouchDB. Nucl. Instrum. Methods A 684, 63–72 (2012). doi:10.1016/j.nima.2012.04.049

    Article  Google Scholar 

  17. G. Nan, Y. Wang, J. Zhang, Design of multi-channel pulse amplitude acquisition card based on NIM system. Nucl. Electron. Detect. Technol. 31, 1250–1254 (2011)

    Google Scholar 

  18. W. Zhou, Y. Wang, G. Nan et al., Design of data transmission for a portable DAQ system. Nucl. Sci. Tech. 25, 010404 (2014). doi:10.13538/j.1001-8042/nst.25.010404

    Google Scholar 

  19. J. Zhang, Y. Wang, G. Nan et al., Trigger signal pre-processing in nuclear physics experiment data acquisition systems. High Power Laser Part. Beams 24, 2727–2730 (2012)

    Article  Google Scholar 

  20. G.N. Perdue, L. Bagby, B. Baldin et al., The MINERnA data acquisition system and infrastructure. Nucl. Instrum. Methods A 694, 179–192 (2012). doi:10.1016/j.nima.2012.08.024

    Article  Google Scholar 

  21. M. Morháč, V. Matoušek, Library of sophisticated functions for analysis of nuclear spectra. Comput. Phys. Commun. 180, 1913–1940 (2009). doi:10.1016/j.cpc.2009.04.025

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-Xiong Zhou.

Additional information

This work was supported by the Fundamental Research Funds for the Central Universities of China (2015CDJXY).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, WX., Wang, YY. & Pan, LM. Design of a NIM-based DAQ system. NUCL SCI TECH 28, 139 (2017). https://doi.org/10.1007/s41365-017-0296-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-017-0296-6

Keywords

Navigation