Advertisement

Search for the QCD critical point with fluctuations of conserved quantities in relativistic heavy-ion collisions at RHIC: an overview

  • Xiaofeng LuoEmail author
  • Nu Xu
Article

Abstract

Fluctuations of conserved quantities, such as baryon, electric charge, and strangeness number, are sensitive observables in relativistic heavy-ion collisions to probe the QCD phase transition and search for the QCD critical point. In this paper, we review the experimental measurements of the cumulants (up to fourth order) of event-by-event net-proton (proxy for net-baryon), net-charge and net-kaon (proxy for net-strangeness) multiplicity distributions in Au+Au collisions at \(\sqrt{{s}_{\text{NN}}}=7.7, 11.5, 14.5, 19.6, 27, 39, 62.4, 200\) GeV from the first phase of beam energy scan program at the relativistic heavy-ion collider (RHIC). We also summarize the data analysis methods of suppressing the volume fluctuations, auto-correlations, and the unified description of efficiency correction and error estimation. Based on theoretical and model calculations, we will discuss the characteristic signatures of critical point as well as backgrounds for the fluctuation observables in heavy-ion collisions. The physics implications and the future second phase of the beam energy scan (2019–2020) at RHIC will also be discussed.

Keywords

QCD critical point Fluctuations and correlations Relativistic heavy-ion collisions Conserved charges 

References

  1. 1.
    S. Gupta, X. Luo, B. Mohanty et al., Scale for the phase diagram of quantum chromodynamics. Science 332, 1525–1528 (2011). doi: 10.1126/science.1204621 CrossRefGoogle Scholar
  2. 2.
    M.M. Aggarwal et al. (STAR Collaboration), An experimental exploration of the QCD phase diagram: the search for the critical point and the onset of de-confinement. arXiv: 1007.2613
  3. 3.
  4. 4.
    Y. Aoki, G. Endrodi, Z. Fodor et al., The order of the quantum chromodynamics transition predicted by the standard model of particle physics. Nature 443, 675–678 (2006). doi: 10.1038/nature05120 CrossRefGoogle Scholar
  5. 5.
    P. de Forcrand, O. Philipsen, The QCD phase diagram for small densities from imaginary chemical potential. Nucl. Phys. B 642, 290–306 (2002). doi: 10.1016/S0550-3213(02)00626-0 CrossRefzbMATHGoogle Scholar
  6. 6.
    G. Endrődi, Z. Fodor, S.D. Katz et al., J. High Energy Phys. 2011, 1 (2011). doi: 10.1007/JHEP04(2011)001 CrossRefGoogle Scholar
  7. 7.
    K. Rajagopal, F. Wilczek, At the Frontier of Particle Physics/Handbook of QCD (World Scientific, Singapore, 2001)zbMATHGoogle Scholar
  8. 8.
    Z. Fodor, S.D. Katz, Critical point of QCD at finite T and \(\mu \), lattice results for physical quark masses. J. High Energy Phys. 04, 050 (2004)CrossRefGoogle Scholar
  9. 9.
    R.V. Gavai, QCD critical point: the race is on. Pramana 84, 757–771 (2015). doi: 10.1007/s12043-015-0983-y CrossRefGoogle Scholar
  10. 10.
    M. Stephanov, K. Rajagopal, E. Shuryak, Signatures of the tricritical point in QCD. Phys. Rev. Lett. 81, 4816 (1998). doi: 10.1103/PhysRevLett.81.4816 CrossRefGoogle Scholar
  11. 11.
    M. Stephanov, K. Rajagopal, E. Shuryak, Event-by-event fluctuations in heavy ion collisions and the QCD critical point. Phys. Rev. D 60, 114028 (1999). doi: 10.1103/PhysRevD.60.114028 CrossRefGoogle Scholar
  12. 12.
    S. Jeon, V. Koch, Fluctuations of particle ratios and the abundance of hadronic resonances. Phys. Rev. Lett. 83, 5435 (1999). doi: 10.1103/PhysRevLett.83.5435 CrossRefGoogle Scholar
  13. 13.
    M. Asakawa, U. Heinz, B. Müller, Fluctuation probes of Quark deconfinement. Phys. Rev. Lett. 85, 2072 (2000). doi: 10.1103/PhysRevLett.85.2072 CrossRefGoogle Scholar
  14. 14.
    V. Koch, A. Majumder, J. Randrup, Baryon–Strangeness correlations: a diagnostic of strongly interacting matter. Phys. Rev. Lett. 95, 182301 (2005). doi: 10.1103/PhysRevLett.95.182301 CrossRefGoogle Scholar
  15. 15.
    S. Ejiri, F. Karsch, K. Redlich, Hadronic fluctuations at the QCD phase transition. Phys. Lett. B 633, 275–282 (2006). doi: 10.1016/j.physletb.2005.11.083 CrossRefGoogle Scholar
  16. 16.
    C. Athanasiou, K. Rajagopal, M. Stephanov, Using higher moments of fluctuations and their ratios in the search for the QCD critical point. Phys. Rev. D 82, 074008 (2010). doi: 10.1103/PhysRevD.82.074008 CrossRefGoogle Scholar
  17. 17.
    M.A. Stephanov, Non-Gaussian fluctuations near the QCD critical point. Phys. Rev. Lett. 102, 032301 (2009). doi: 10.1103/PhysRevLett.102.032301 CrossRefGoogle Scholar
  18. 18.
    M.A. Stephanov, Sign of kurtosis near the QCD critical point. Phys. Rev. Lett. 107, 052301 (2011). doi: 10.1103/PhysRevLett.107.052301 CrossRefGoogle Scholar
  19. 19.
    B. Schaefer, M. Wagner, QCD critical region and higher moments for three-flavor models. Phys. Rev. D 85, 034027 (2012). doi: 10.1103/PhysRevD.85.034027 CrossRefGoogle Scholar
  20. 20.
    Y. Hatta, M.A. Stephanov, Proton-number fluctuation as a signal of the QCD critical end point. Phys. Rev. Lett. 91, 102003 (2003). doi: 10.1103/PhysRevLett.91.102003 CrossRefGoogle Scholar
  21. 21.
    H.-T. Ding, F. Karsch, S. Mukherjee, Thermodynamics of strong-interaction matter from lattice QCD. Int. J. Mod. Phys. E 24, 1530007 (2015). doi: 10.1142/S0218301315300076 CrossRefzbMATHGoogle Scholar
  22. 22.
    R.V. Gavai, S. Gupta, Lattice QCD predictions for shapes of event distributions along the freezeout curve in heavy-ion collisions. Phys. Lett. B 696, 459–463 (2011). doi: 10.1016/j.physletb.2011.01.006 CrossRefGoogle Scholar
  23. 23.
    M. Cheng, P. Hegde, C. Jung et al., Baryon number, strangeness, and electric charge fluctuations in QCD at high temperature. Phys. Rev. D 79, 074505 (2009). doi: 10.1103/PhysRevD.79.074505 CrossRefGoogle Scholar
  24. 24.
    A. Bazavov, T. Bhattacharya, C.E. DeTar et al., Fluctuations and correlations of net baryon number, electric charge, and strangeness: a comparison of lattice QCD results with the hadron resonance gas model. Phys. Rev. D 86, 034509 (2012). doi: 10.1103/PhysRevD.86.034509 CrossRefGoogle Scholar
  25. 25.
    A. Bazavov, H.-T. Ding, P. Hegde et al., Freeze-out conditions in heavy ion collisions from QCD thermodynamics. Phys. Rev. Lett. 109, 192302 (2012). doi: 10.1103/PhysRevLett.109.192302 CrossRefGoogle Scholar
  26. 26.
    B. Friman, F. Karsch, K. Redlich et al., Fluctuations as probe of the QCD phase transition and freeze-out in heavy ion collisions at LHC and RHIC. Eur. Phys. J. C 71, 1694 (2011). doi: 10.1140/epjc/s10052-011-1694-2 CrossRefGoogle Scholar
  27. 27.
    B. Friman, Probing the QCD phase diagram with fluctuations. Nucl. Phys. A 928, 198–208 (2014). doi: 10.1016/j.nuclphysa.2014.04.012 CrossRefGoogle Scholar
  28. 28.
    B. Friman, F. Karsch, K. Redlich, V. Skokov et al., Fluctuations as probe of the QCD phase transition and freeze-out in heavy ion collisions at LHC and RHIC. Eur. Phys. J. C 71, 1694 (2011). doi: 10.1140/epjc/s10052-011-1694-2 CrossRefGoogle Scholar
  29. 29.
    K. Morita, B. Friman, K. Redlich, Criticality of the net-baryon number probability distribution at finite density. Phys. Lett. B 741, 178–183 (2015). doi: 10.1016/j.physletb.2014.12.037 CrossRefGoogle Scholar
  30. 30.
    M. Asakawa, S. Ejiri, M. Kitazawa, Third moments of conserved charges as probes of QCD phase structure. Phys. Rev. Lett. 103, 262301 (2009). doi: 10.1103/PhysRevLett.103.262301 CrossRefGoogle Scholar
  31. 31.
    T. Andrews, Bakerian lecture: on the continuity of the gaseous and liquid states of matter. Proc. R. Soc. Lond. 18, 42–45 (1869)CrossRefGoogle Scholar
  32. 32.
    P. Braun-Munzinger, J. Wambach, Colloquium: phase diagram of strongly interacting matter. Rev. Mod. Phys. 81, 1031 (2009). doi: 10.1103/RevModPhys.81.1031 CrossRefGoogle Scholar
  33. 33.
    S. Datta, R.V. Gavai, S. Gupta, The QCD critical point: marching towards continuum. Nucl. Phys. A 904, 883c–886c (2013). doi: 10.1016/j.nuclphysa.2013.02.156 CrossRefGoogle Scholar
  34. 34.
    S. Datta, R.V. Gavai, S. Gupta, Quark number susceptibilities and equation of state at finite chemical potential in staggered QCD with Nt=8. Phys. Rev. D 95, 054512 (2017). doi: 10.1103/PhysRevD.95.054512 CrossRefGoogle Scholar
  35. 35.
    F. Karsch et al., Conserved charge fluctuations from lattice QCD and the beam energy scan. Nucl. Phys. A 956, 352–355 (2016). doi: 10.1016/j.nuclphysa.2016.01.008 CrossRefGoogle Scholar
  36. 36.
    F. Karsch, Presentation at CPOD2016, Wrocław, Poland. http://ift.uni.wroc.pl/~cpod2016/Karsch.pdf
  37. 37.
    F. Karsch, Lattice QCD results on cumulant ratios at freeze-out. J. Phys. Conf. Ser. 779, 012015 (2017). doi: 10.1088/1742-6596/779/1/012015 CrossRefGoogle Scholar
  38. 38.
    F. Karsch, Presentation at INT Workshop 2016, Seattle, US. http://www.int.washington.edu/talks/WorkShops/int_16_3/People/Karsch_F/Karsch.pdf
  39. 39.
    X.-Y. Xin, S.-X. Qin, Y.-X. Liu et al., Quark number fluctuations at finite temperature and finite chemical potential via the Dyson–Schwinger equation approach. Phys. Rev. D 90, 076006 (2014). doi: 10.1103/PhysRevD.90.076006 CrossRefGoogle Scholar
  40. 40.
    C. Shi, Y.-L. Wang, Y. Jiang et al., Locate QCD critical end point in a continuum model study. J. High Energy Phys. 7, 14 (2014). doi: 10.1007/JHEP07(2014)014 CrossRefGoogle Scholar
  41. 41.
    C.S. Fischer, J. Luecker, C.A. Welzbacher, Phase structure of three and four flavor QCD. Phys. Rev. D 90, 034022 (2014). doi: 10.1103/PhysRevD.90.034022 CrossRefGoogle Scholar
  42. 42.
    B. Berche, M. Henkel, R. Kenna, Revista Brasileira de Ensino de Física, Critical phenomena: 150 years since Cagniard de la Tour 31, 2602–2601 (2009)Google Scholar
  43. 43.
    K.G. Wilson, J. Kogut, The renormalization group and the \(\epsilon \) expansion. Phys. Rep. 12, 75–199 (1974). doi: 10.1016/0370-1573(74)90023-4 CrossRefGoogle Scholar
  44. 44.
    M. Stephanov, QCD phase diagram and the critical point. Int. J. Mod. Phys. A 20, 4387 (2005). doi: 10.1142/S0217751X05027965 CrossRefGoogle Scholar
  45. 45.
    B. Berdnikov, K. Rajagopal, Slowing out of equilibrium near the QCD critical point. Phys. Rev. D 61, 105017 (2000). doi: 10.1103/PhysRevD.61.105017 CrossRefGoogle Scholar
  46. 46.
    S. Jeon, V. Koch, Event by event fluctuations. Quark–Gluon Plasma 3, 430–490 (2004). doi: 10.1142/9789812795533_0007 zbMATHGoogle Scholar
  47. 47.
    V. Koch, Hadronic fluctuations and correlations. Landolt Börnstein 23, 626–652 (2010). doi: 10.1007/978-3-642-01539-7_20 Google Scholar
  48. 48.
    F. Karsch, K. Redlich, Probing freeze-out conditions in heavy ion collisions with moments of charge fluctuations. Phys. Lett. B 695, 136–142 (2011). doi: 10.1016/j.physletb.2010.10.046 CrossRefGoogle Scholar
  49. 49.
    J. Fu, Higher moments of net-proton multiplicity distributions in heavy ion collisions at chemical freeze-out. Phys. Lett. B 722, 144–150 (2013). doi: 10.1016/j.physletb.2013.04.018 CrossRefzbMATHGoogle Scholar
  50. 50.
    J. Fu, Higher moments of multiplicity fluctuations in a hadron-resonance gas with exact conservation laws. arXiv:1610.07138
  51. 51.
    K.G. Wilson, Confinement of quarks. Phys. Rev. D 10, 2445 (1974). doi: 10.1103/PhysRevD.10.2445 CrossRefGoogle Scholar
  52. 52.
    A. Bazavov, T. Bhattacharya, C. Detar et al., Equation of state in (2+1)-flavor QCD. Phys. Rev. D 90, 094503 (2014). doi: 10.1103/PhysRevD.90.094503 CrossRefGoogle Scholar
  53. 53.
    A. Bazavov, H.-T. Ding, P. Hegde et al., QCD equation of state to O(\(\mu ^6_B\)) from lattice QCD. Phys. Rev. D 95, 054504 (2017). doi: 10.1103/PhysRevD.95.054504 CrossRefGoogle Scholar
  54. 54.
    X. Luo, Error estimation for moment analysis in heavy-ion collision experiment. J. Phys. G Nucl. Part. Phys. 39, 025008 (2012). doi: 10.1088/0954-3899/39/2/025008 CrossRefGoogle Scholar
  55. 55.
    X. Luo, Unified description of efficiency correction and error estimation for moments of conserved quantities in heavy-ion collisions. Phys. Rev. C 91, 034907 (2015). doi: 10.1103/PhysRevC.91.034907 [Erratum: Phys. Rev. C 94, 059901 (2016). doi 10.1103/PhysRevC.94.059901]
  56. 56.
    W.K. Fan, X.F. Luo, H.S. Zong, Susceptibilities of conserved charges within a modified Nambu–Jona–Lasinio model. arXiv: 1608.07903
  57. 57.
    J.-W. Chen, J. Deng, L. Labun, Baryon susceptibilities, non-Gaussian moments, and the QCD critical point. Phys. Rev. D 92, 054019 (2015). doi: 10.1103/PhysRevD.92.054019 CrossRefGoogle Scholar
  58. 58.
    J.-W. Chen, J. Deng, H. Kohyama et al., Robust characteristics of non-Gaussian fluctuations from the NJL model. Phys. Rev. D 93, 034037 (2016). doi: 10.1103/PhysRevD.93.034037 CrossRefGoogle Scholar
  59. 59.
    M. Nahrgang, C. Herold, Phenomena at the QCD phase transition in nonequilibrium chiral fluid dynamics (\(\text{ N }\chi \) FD). Eur. Phys. J. A 52, 240 (2016). doi: 10.1140/epja/i2016-16240-9 CrossRefGoogle Scholar
  60. 60.
    C. Herold, M. Nahrgang, Y. Yan et al., Dynamical net-proton fluctuations near a QCD critical point. Phys. Rev. C 93, 021902(R) (2016). doi: 10.1103/PhysRevC.93.021902 CrossRefGoogle Scholar
  61. 61.
    V. Vovchenko, D.V. Anchishkin, M.I. Gorenstein et al., Scaled variance, skewness, and kurtosis near the critical point of nuclear matter. Phys. Rev. C 92, 054901 (2015). doi: 10.1103/PhysRevC.92.054901 CrossRefGoogle Scholar
  62. 62.
    M. Bluhm, M. Nahrgang, S.A. Bass et al., Impact of resonance decays on critical point signals in net-proton fluctuations. Eur. Phys. J. C 77, 210 (2017). doi: 10.1140/epjc/s10052-017-4771-3 CrossRefGoogle Scholar
  63. 63.
    M. Bluhm, M. Nahrgang, S.A. Bass et al., Behavior of universal critical parameters in the QCD phase diagram. J. Phys. Conf. Ser. 779, 012074 (2017). doi: 10.1088/1742-6596/779/1/012074 CrossRefGoogle Scholar
  64. 64.
    A. Mukherjee, J. Steinheimer, S. Schramm, Higher-order baryon number susceptibilities: interplay between the chiral and the nuclear liquid–gas transitions. arXiv: 1611.10144
  65. 65.
    S. Mukherjee, R. Venugopalan, Y. Yin, Universal off-equilibrium scaling of critical cumulants in the QCD phase diagram. Phys. Rev. Lett. 117, 222301 (2016). doi: 10.1103/PhysRevLett.117.222301 CrossRefGoogle Scholar
  66. 66.
    V.V. Begun, V. Vovchenko, M.I. Gorenstein, Updates to the p+p and A+A chemical freeze-out lines from the new experimental data. J. Phys. Conf. Ser. 779, 012080 (2017). doi: 10.1088/1742-6596/779/1/012080 CrossRefGoogle Scholar
  67. 67.
    M. Asakawa, M. Kitazawa, Progress in particle and nuclear physics 90, 299. Prog. Part. Nucl. Phys. 90, 299–342 (2016). doi: 10.1016/j.ppnp.2016.04.002 CrossRefGoogle Scholar
  68. 68.
    Y. Ohnishi, M. Kitazawa, M. Asakawa, Thermal blurring of event-by-event fluctuations generated by rapidity conversion. Phys. Rev. C 94, 044905 (2016). doi: 10.1103/PhysRevC.94.044905 CrossRefGoogle Scholar
  69. 69.
    M. Kitazawa, Rapidity window dependences of higher order cumulants and diffusion master equation. Nucl. Phys. A 942, 65–96 (2015). doi: 10.1016/j.nuclphysa.2015.07.008 CrossRefGoogle Scholar
  70. 70.
    P. Garg, D.K. Mishra, P.K. Netrakanti et al., Conserved number fluctuations in a hadron resonance gas model. Phys. Lett. B 726, 691–696 (2013). doi: 10.1016/j.physletb.2013.09.019 CrossRefGoogle Scholar
  71. 71.
    M. Nahrgang, M. Bluhm, P. Alba et al., Impact of resonance regeneration and decay on the net proton fluctuations in a hadron resonance gas. Eur. Phys. J. C 75, 573 (2015). doi: 10.1140/epjc/s10052-015-3775-0 CrossRefGoogle Scholar
  72. 72.
    X. Luo, B. Mohanty, N. Xu, Baseline for the cumulants of net-proton distributions at STAR. Nucl. Phys. A 931, 808–813 (2014). doi: 10.1016/j.nuclphysa.2014.08.105 CrossRefGoogle Scholar
  73. 73.
    T.J. Tarnowsky, G.D. Westfall, First study of the negative binomial distribution applied to higher moments of net-charge and net-proton multiplicity distributions. Phys. Lett. B 724, 51–55 (2013). doi: 10.1016/j.physletb.2013.05.064 CrossRefGoogle Scholar
  74. 74.
    S. He, X. Luo, Y. Nara et al., Effects of nuclear potential on the cumulants of net-proton and net-baryon multiplicity distributions in Au+Au collisions at \(\sqrt{S_\text{ NN }}=5\) GeV. Phys. Lett. B 762, 296–300 (2016). doi: 10.1016/j.physletb.2016.09.053 CrossRefGoogle Scholar
  75. 75.
    A. Bzdak, V. Koch, V. Skokov, Baryon number conservation and the cumulants of the net proton distribution. Phys. Rev. C 87, 014901 (2013). doi: 10.1103/PhysRevC.87.014901 CrossRefGoogle Scholar
  76. 76.
    K. Fukushima, Hadron resonance gas and mean-field nuclear matter for baryon number fluctuations. Phys. Rev. C 91, 044910 (2015). doi: 10.1103/PhysRevC.91.044910 CrossRefGoogle Scholar
  77. 77.
    Z.W. Lin, C.M. Ko, B.-A. Li et al., Multiphase transport model for relativistic heavy ion collisions. Phys. Rev. C 72, 064901 (2005). doi: 10.1103/PhysRevC.72.064901 CrossRefGoogle Scholar
  78. 78.
    M. Bleicher, E. Zabrodin, C. Spieles et al., Relativistic hadron-hadron collisions in the ultra-relativistic quantum molecular dynamics model. J. Phys. G Nucl. Part. Phys. 25(9), 1859 (1999). doi: 10.1088/0954-3899/25/9/308 CrossRefGoogle Scholar
  79. 79.
    M. Kitazawa, M. Asakawa, Revealing baryon number fluctuations from proton number fluctuations in relativistic heavy ion collisions. Phys. Rev. C 85, 021901(R) (2012). doi: 10.1103/PhysRevC.85.021901 CrossRefGoogle Scholar
  80. 80.
    M. Kitazawa, M. Asakawa, Relation between baryon number fluctuations and experimentally observed proton number fluctuations in relativistic heavy ion collisions. Phys. Rev. C 86, 024904 (2012). doi: 10.1103/PhysRevC.86.024904 [Erratum 86, 069902 (2012). doi: 10.1103/PhysRevC.86.069902]
  81. 81.
    B. Ling, M.A. Stephanov, Acceptance dependence of fluctuation measures near the QCD critical point. Phys. Rev. C 93, 034915 (2016). doi: 10.1103/PhysRevC.93.034915 CrossRefGoogle Scholar
  82. 82.
    A. Bzdak, V. Koch, N. Strodthoff, Cumulants and correlation functions vs the QCD phase diagram. arXiv: 1607.07375
  83. 83.
    Y. Nara, N. Otuka, A. Ohnishi et al., Relativistic nuclear collisions at \(10A\) GeV energies from \(p\)+Be to Au+Au with the hadronic cascade model. Phys. Rev. C 61, 024901 (1999). doi: 10.1103/PhysRevC.61.024901 CrossRefGoogle Scholar
  84. 84.
    X. Luo (for the STAR Collaboration), probing the QCD critical point with higher moments of net-proton multiplicity distributions. J. Phys. Conf. Ser. 316, 012003 (2011). doi: 10.1088/1742-6596/316/1/012003
  85. 85.
    X. Luo, J. Xu, B. Mohanty et al., Volume fluctuation and auto-correlation effects in the moment analysis of net-proton multiplicity distributions in heavy-ion collisions. J. Phys. G 40(10), 105104 (2013). doi: 10.1088/0954-3899/40/10/105104 CrossRefGoogle Scholar
  86. 86.
    A. Bzdak, V. Koch, Acceptance corrections to net baryon and net charge cumulants. Phys. Rev. C 86, 044904 (2012). doi: 10.1103/PhysRevC.86.044904 CrossRefGoogle Scholar
  87. 87.
    A. Bzdak, V. Koch, Local efficiency corrections to higher order cumulants. Phys. Rev. C 91, 027901 (2015). doi: 10.1103/PhysRevC.91.027901 CrossRefGoogle Scholar
  88. 88.
    M.L. Miller, K. Reygers, S.J. Sanders et al., Glauber modeling in high-energy nuclear collisions. Annu. Rev. Nucl. Part. Sci. 57, 205–243 (2007). doi: 10.1146/annurev.nucl.57.090506.123020 CrossRefGoogle Scholar
  89. 89.
    H.-J. Xu, Cumulants of multiplicity distributions in most-central heavy-ion collisions. Phys. Rev. C 94, 054903 (2016). doi: 10.1103/PhysRevC.94.054903 CrossRefGoogle Scholar
  90. 90.
    H.-J. Xu, Importance of volume corrections on the net-charge distributions at the RHIC BES energies, CPOD 2016 proceedings. arXiv:1610.08591
  91. 91.
    P. Braun-Munzinger, A. Rustamov, J. Stachel, Bridging the gap between event-by-event fluctuation measurements and theory predictions in relativistic nuclear collisions. Nucl. Phys. A 96, 114–130 (2017). doi: 10.1016/j.nuclphysa.2017.01.011 CrossRefGoogle Scholar
  92. 92.
    V. Skokov, B. Friman, K. Redlich, Volume fluctuations and higher-order cumulants of the net baryon number. Phys. Rev. C 88, 034911 (2013). doi: 10.1103/PhysRevC.88.034911 CrossRefGoogle Scholar
  93. 93.
    H.-J. Xu, Effects of volume corrections and resonance decays on cumulants of net-charge distributions in a Monte Carlo hadron resonance gas model. Phys. Lett. B 765, 188–192 (2017). doi: 10.1016/j.physletb.2016.12.015 CrossRefGoogle Scholar
  94. 94.
    A. Bzdak, V. Koch, V. Skokov, Correlated stopping, proton clusters and higher order proton cumulants (2016). arXiv:1612.05128
  95. 95.
    B.I. Abelev et al. (STAR Collaboration), Systematic measurements of identified particle spectra in \(pp\), \(d\)+Au, and Au+Au collisions at the STAR detector. Phys. Rev. C 79, 034909 (2009). doi: 10.1103/PhysRevC.79.034909
  96. 96.
    M. Kitazawa, Efficient formulas for efficiency correction of cumulants. Phys. Rev. C 93, 044911 (2016). doi: 10.1103/PhysRevC.93.044911 CrossRefGoogle Scholar
  97. 97.
    A. Bzdak, R. Holzmann, V. Koch, Multiplicity-dependent and nonbinomial efficiency corrections for particle number cumulants. Phys. Rev. C 94, 064907 (2016). doi: 10.1103/PhysRevC.94.064907 CrossRefGoogle Scholar
  98. 98.
    Anirban DasGupta, Asymptotic Theorey of Statistics and Probability (Springer, Berlin, 2008)Google Scholar
  99. 99.
    J. Bai, S. Ng, Tests for skewness, kurtosis, and normality for time series data. J. Bus. Econ. Stat. 23(1), 49–60 (2005). doi: 10.1198/073500104000000271 MathSciNetCrossRefGoogle Scholar
  100. 100.
    G. Maurice, M.A. Kendall, The Advanced Theory of Statistics, vol. 1 (Charles Griffin & Company Limited, London, 1945)zbMATHGoogle Scholar
  101. 101.
    L. Adamczyk et al. (STAR Collaboration), Energy dependence of moments of net-proton multiplicity distributions at RHIC. Phys. Rev. Lett. 112, 032302 (2014). doi: 10.1103/PhysRevLett.112.032302
  102. 102.
    L. Adamczyk et al. (STAR Collaboration), Beam energy dependence of moments of the net-charge multiplicity distributions in Au+Au collisions at RHIC. Phys. Rev. Lett. 113, 092301 (2014). doi: 10.1103/PhysRevLett.113.092301
  103. 103.
    J. Xu, Talk at RHIC & AGS User Meeting (2016). https://www.bnl.gov/aum2016/content/workshops/Workshop_1b/xu_ji.pdf
  104. 104.
    J. Xu, for the STAR Collaboration, Energy dependence of moments of net-proton, net-kaon, and net-charge multiplicity distributions at STAR. J. Phys. Conf. Ser. 736, 012002 (2016). doi: 10.1088/1742-6596/736/1/012002
  105. 105.
    J. Thäder (for the STAR Collaboration), Higher moments of net-particle multiplicity distributions. Nucl. Phys. A 956, 320–323 (2016). doi: 10.1016/j.nuclphysa.2016.02.047
  106. 106.
    M.M. Aggarwal et al. (STAR Collaboration), Higher moments of net proton multiplicity distributions at RHIC. Phys. Rev. Lett. 105, 022302 (2010). doi: 10.1103/PhysRevLett.105.022302
  107. 107.
    X. Luo (for the STAR Collaboration), Energy dependence of moments of net-proton and net-charge multiplicity distributions at STAR, PoS(CPOD2014)019 (2015). arXiv: 1503.02558
  108. 108.
    X. Luo, Exploring the QCD phase structure with beam energy scan in heavy-ion collisions. Nucl. Phys. A 956, 75–82 (2016). doi: 10.1016/j.nuclphysa.2016.03.025 CrossRefGoogle Scholar
  109. 109.
    K. Morita, V. Skokov, B. Friman et al., Net baryon number probability distribution near the chiral phase transition. Eur. Phys. J. C 74, 2706 (2014). doi: 10.1140/epjc/s10052-013-2706-1 CrossRefGoogle Scholar
  110. 110.
    P. Braun-Munzinger, B. Friman, F. Karsch et al., Net charge probability distributions in heavy ion collisions at chemical freeze-out. Nucl. Phys. A 880, 48–64 (2012). doi: 10.1016/j.nuclphysa.2012.02.010 CrossRefGoogle Scholar
  111. 111.
    P. Braun-Munzinger, B. Friman, F. Karsch et al., Net-proton probability distribution in heavy ion collisions. Phys. Rev. C 84, 064911 (2011). doi: 10.1103/PhysRevC.84.064911 CrossRefGoogle Scholar
  112. 112.
    J. Xu (for the STAR Collaboration), Higher moments of net-kaon multiplicity distributions at STAR, SQM2016 proceedings. J. Phys. Conf. Ser. 779(1), 012073 (2017). doi: 10.1088/1742-6596/779/1/012073
  113. 113.
    A. Adare et al. (PHENIX Collaboration), Measurement of higher cumulants of net-charge multiplicity distributions in Au+Au collisions at \(\sqrt{s_NN}=7.7\)-200 GeV. Phys. Rev. C 93, 011901(R) (2016). doi: 10.1103/PhysRevC.93.011901
  114. 114.
    J. Xu, S.L. Yu, F. Lui et al., Cumulants of net-proton, net-kaon, and net-charge multiplicity distributions in Au+Au collisions at \(\sqrt{s_{\text{NN}}}=7.7\), 11.5, 19.6, 27, 39, 62.4, and 200 GeV within the UrQMD model. Phys. Rev. C 94, 024901 (2016). doi: 10.1103/PhysRevC.94.024901 CrossRefGoogle Scholar
  115. 115.
    S. Borsanyi, Z. Fodor, S.D. Katz et al., Freeze-out parameters: lattice meets experiment. Phys. Rev. Lett. 111, 062005 (2013). doi: 10.1103/PhysRevLett.111.062005 CrossRefGoogle Scholar
  116. 116.
    J. Noronha-Hostler, R. Bellwied, J. Gunther, et al., Kaon fluctuations from lattice QCD. arXiv: 1607.02527
  117. 117.
    P. Alba, W. Albericoa, R. Bellwied et al., Freeze-out conditions from net-proton and net-charge fluctuations at RHIC. Phys. Lett. B 738, 305–310 (2014). doi: 10.1016/j.physletb.2014.09.052 CrossRefGoogle Scholar
  118. 118.
  119. 119.
    L. Adamczyk et al., STAR Collaboration, Physics program for the STAR/CBM eTOF upgrade. arXiv:1609.05102
  120. 120.
    T. Ablyazimov, A. Abuhoza, R.P. Adak et al. (CBM Collaboration), Challenges in QCD matter physics—the scientific programme of the compressed baryonic matter experiment at FAIR. Euro. Phys. J. A 53, 60 (2017). doi: 10.1140/epja/i2017-12248-y
  121. 121.
    R. Rapp, Advances in High Energy Physics (Hindawi Publishing Corporation, Cairo, 2013)Google Scholar
  122. 122.
    Y. Zhang, H. Xu, W. Zha et al., Di-lepton production in heavy-ion collisions and the QCD phase diagram. Cent. Eur. J. Phys. 10(6), 1352–1356 (2012). doi: 10.2478/s11534-012-0096-x Google Scholar
  123. 123.
    R. Rapp, J. Wambach, Advances in Nuclear Physics (Springer, Berlin, 2002)Google Scholar
  124. 124.
    S. Mukherjee, R. Venugopalan, Y. Yin, Real-time evolution of non-Gaussian cumulants in the QCD critical regime. Phys. Rev. C 92, 034912 (2015). doi: 10.1103/PhysRevC.92.034912 CrossRefGoogle Scholar
  125. 125.
    L. Jiang, P. Li, H. Song, Multiplicity fluctuations of net protons on the hydrodynamic freeze-out surface. Nucl. Phys. A 956, 360–364 (2016). doi: 10.1016/j.nuclphysa.2016.01.034 CrossRefGoogle Scholar
  126. 126.
    L. Jiang, P. Li, H. Song, Correlated fluctuations near the QCD critical point. Phys. Rev. C 94, 024918 (2016). doi: 10.1103/PhysRevC.94.024918 CrossRefGoogle Scholar

Copyright information

© Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Chinese Nuclear Society, Science Press China and Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.Institute of Particle Physics and Key Laboratory of Quark and Lepton Physics (MOE)Central China Normal UniversityWuhanChina
  2. 2.Department of Physics and AstronomyUniversity of CaliforniaLos AngelesUSA
  3. 3.Nuclear Science DivisionLawrence Berkeley National LaboratoryBerkeleyUSA

Personalised recommendations