Advertisement

Simulations of mass attenuation coefficients for shielding materials using the MCNP-X code

  • Huseyin Ozan Tekin
  • Tugba Manici
Article

Abstract

In this paper, mass attenuation coefficients of concrete, bricks and cement plaster, as shielding materials, are calculated at 59.5, 356, 662, 1173, 1274 and 1333 keV by using the MCNP-X (version 2.4.0) code. The numerical simulation results are compared with previous Monte Carlo studies, experimental results and XCOM data. The effects of barite on mass attenuation coefficients are investigated. The mass attenuation coefficients increase with the barite content. Thus, our results agree well with experimental studies on gamma ray shielding of barite. It is flexible for the MN method to change the barite rates in material by small increments, which is experimentally difficult. Also, modeled geometry can be used for future approaches such as new designs and new structures especially in investigating new barite-containing materials to build nuclear reactors or high-energy radiation therapy facilities.

Keywords

Monte Carlo simulation Gamma ray attenuation Barite (BaSO4

References

  1. 1.
    NCRP Report No.151: Structural Shielding Design and Evaluation for Megavoltage X-ray/γ-ray Radiotherapy Facilities (Oxford University Press, Oxford, 2005)Google Scholar
  2. 2.
    A. Samarin, Use of concrete as a biological shield from ionising radiation. Energy Environ. Eng. 1(2), 90–97 (2013). doi: 10.13189/eee.2013.010208 Google Scholar
  3. 3.
    L. Bragança, M. Pinheiro, S. Jalali et al., Sustainable Construction Materials and Practices (IOS Press BV, Amsterdam, 2007)Google Scholar
  4. 4.
    I. Akkurt, H. Akyildirim, B. Mavi et al., Gamma-ray- shielding properties of concrete including barite at different energies. Prog. Nucl. Energy 52(7), 620–623 (2010). doi: 10.1016/j.pnucene.2010.04.006 CrossRefGoogle Scholar
  5. 5.
    M.F. Kaplan, Concrete Radiation Shielding (Wiley, New York, 1989)Google Scholar
  6. 6.
    I. Akkurt, H. Akyildirim, B. Mavi et al., Photon attenuation coefficients of concrete includes barite in different rate. Ann. Nucl. Energy 37, 910–914 (2010). doi: 10.1016/j.anucene.2010.04.001 CrossRefGoogle Scholar
  7. 7.
    F. Bouzarjomehri, T. Bayat, M.H. Dashti et al., 60Co γ-ray attenuation coefficient of barite concrete. Iran. Radiat. Res. 4(2), 71–75 (2006)Google Scholar
  8. 8.
    T.C. Ling, X-ray radiation shielding properties of cement mortars prepared with different types of aggregates. Mater. Struct. 46(7), 1133–1141 (2013). doi: 10.1617/s11527-012-9959-2 CrossRefGoogle Scholar
  9. 9.
    I. Akkurt, S. Emikonel, F. Akarslan et al., Barite effect on radiation shielding properties of cotton-polyester fabric. Acta Phys. Polon. A 128(2B), 53–54 (2015). doi: 10.12693/APhysPolA.128.B-53 CrossRefGoogle Scholar
  10. 10.
    R. Picha, J. Channuie, S. Khaweerat et al., Gamma and neutron attenuation properties of barite-cement mixture. J. Phys: Conf. Ser. 611(1), 1–7 (2015). doi: 10.1088/1742-6596/611/1/012002 Google Scholar
  11. 11.
    S. Sharifi, R. Bagheri, S.P. Shirmadi, Comparison of shielding properties for ordinary, barite, serpentine and steel-magnetite using MCNP-4C code and available experimental results. Ann. Nucl. Energy 53, 529–534 (2013). doi: 10.1016/j.anucene.2012.09.015 CrossRefGoogle Scholar
  12. 12.
    S.P. Shirmardi, M. Shamsaei, M. Naserpur, Comparison of photon attenuation coefficients of various barite concretes and lead by MCNP code, XCOM and experimental data. Ann. Nucl. Energy 55, 288–291 (2013). doi: 10.1016/j.anucene.2013.01.002 CrossRefGoogle Scholar
  13. 13.
    V.P. Singh, S.P. Shirmardi, M.E. Medhat, N.M. Badiger. Determination of mass attenuation coefficient for some polymers using Monte Carlo simulation. Vacuum 119, 284–288 (2015). doi: 10.1016/j.vacuum.2015.06.006 CrossRefGoogle Scholar
  14. 14.
    Hendricks J.S. MCNPX Model/Table Comparison. Tamara Hallman, Plus Grup. LA-14030 (2003)Google Scholar
  15. 15.
    A.M. Ali, Determination of attenuation properties for some building materials by MCNP simulation. Arab. J. Nucl. Sci. Appl. 48(1), 33–39 (2015)Google Scholar
  16. 16.
    M.J. Berger, J.H. Hubbell, XCOM: Photon Cross Sections Database, Web Version 1.2, 1999. http://physics.nist.gov/xcom. Originally published as NBSIR 87-3597 XCOM: Photon Cross Sections on a Personal Computer (1987)
  17. 17.
    RSICC Computer Code Collection. MCNPX User’s Manual Version 2.4.0. Monte Carlo N-Particle Transport Code System for Multiple and High Energy Applications (2002)Google Scholar
  18. 18.
    I. Akkurt, H.O. Tekin, A. Mesbahi, Calculation of detection efficiency for the gamma detector using MCNP-X. Acta Phys. Polon. A 128(2-B), 332–334 (2015). doi: 10.12693/APhysPolA.128.B-332 CrossRefGoogle Scholar
  19. 19.
    H.O. Tekin, U. Kara, Monte Carlo simulation for distance and absorbed dose calculations in a PET-CT facility by using MCNP-X. J. Commun. Comput. 13, 32–35 (2016). doi: 10.17265/1548-7709/2016.01.005 Google Scholar
  20. 20.
    I. Akkurt, H. Canakci, Radiation attenuation of boron doped clay for 662,1173 and 1332 keV gamma-rays. Iran J. Radiat. Res. 9(1), 37–40 (2011)Google Scholar
  21. 21.
    J.M. Sharaf, M.S. Hamideen, Photon attenuation coefficients and shielding effects of Jordanian building materials. Ann. Nucl. Energy 62, 50–56 (2013). doi: 10.1016/j.anucene.2013.06.008 CrossRefGoogle Scholar
  22. 22.
    M.A. Abdel-Rahman, E.A. Badawi, Y.L. Abdel-Hady, N. Kamel, Effect of sample thickness on the measured mass attenuation coefficients of some compounds and elements for 59.54, 661.6 and 1332.5 keV γ-rays. Nucl. Instrum. Methods Phys. Res. A 447, 432–436 (2000). doi: 10.1016/S0168-9002(99)01257-7 CrossRefGoogle Scholar
  23. 23.
    I. Akkurt, H. Akyildirim, F. Karipcin, B. Mavi, Chemical corrosion on gamma-ray attenuation properties of barite concrete. Saudi Chem. Soc. 16, 199–202 (2012). doi: 10.1016/j.jscs.2011.01.003 CrossRefGoogle Scholar

Copyright information

© Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Chinese Nuclear Society, Science Press China and Springer Science+Business Media Singapore 2017

Authors and Affiliations

  1. 1.Vocational School of Health Service, Radiotherapy DepartmentUskudar UniversityIstanbulTurkey
  2. 2.Medical Radiation Research Center (USMERA)Uskudar UniversityIstanbulTurkey

Personalised recommendations