Development of a compact DOI–TOF detector module for high-performance PET systems

  • Qing-Yang Wei
  • Tian-Peng Xu
  • Tian-Tian Dai
  • Shi Wang
  • Ya-Qiang Liu
  • Yu Gu
  • Tian-Yu Ma


To increase spatial resolution and signal-to-noise ratio in PET imaging, we present in this paper the design and performance evaluation of a PET detector module combining both depth-of-interaction (DOI) and time-of-flight (TOF) capabilities. The detector module consists of a staggered dual-layer LYSO block with 2 mm × 2 mm × 7 mm crystals. MR-compatible SiPM sensors (MicroFJ-30035-TSV, SensL) are assembled into an 8 × 8 array. SiPM signals from both fast and slow outputs are read out by a 128-channel ASIC chip. To test its performance, a flood histogram is acquired with a 22Na point source on top of the detector, and the energy resolution and the coincidence resolving time (CRT) value for each individual crystal are measured. The flood histogram shows excellent crystal separation in both layers. The average energy resolution at 511 keV is 14.0 and 12.7% at the bottom and top layers, respectively. The average CRT of a single crystal is 635 and 565 ps at the bottom and top layers, respectively. In conclusion, the compact DOI–TOF PET detector module is of excellent crystal identification capability, good energy resolution and reasonable time resolution and has promising application prospective in clinical TOF PET, PET/MRI, and brain PET systems.


Positron emission tomography SiPM Depth of interaction (DOI) Time-of-flight (TOF) 



We thank Prof. Ru-Tao Yao with University at Buffalo for improvement of the text.


  1. 1.
    G. Delso, S. Fürst, B. Jakoby et al., Performance measurements of the Siemens mMR integrated whole-body PET/MR scanner. J. Nucl. Med. 52, 1914–1922 (2011). doi: 10.2967/jnumed.111.092726 CrossRefGoogle Scholar
  2. 2.
    E. Roncali, S.R. Cherry, Application of silicon photomultipliers to positron emission tomography. Ann. Biomed. Eng. 39, 1358–1377 (2011). doi: 10.1007/s10439-011-0266-9 CrossRefGoogle Scholar
  3. 3.
    H.S. Yoon, G.B. Ko, S.I. Kwon et al., Initial results of simultaneous PET/MRI experiments with an MRI-compatible silicon photomultiplier PET scanner. J. Nucl. Med. 53, 608–614 (2012). doi: 10.2967/jnumed.111.097501 CrossRefGoogle Scholar
  4. 4.
    Y.J. Wang, Z.M. Zhang, D.W. Li et al., Development of a PET insert for simultaneous small animal PET/MRI. EJNMMI Phys. (2015). doi: 10.1186/2197-7364-2-S1-A21 Google Scholar
  5. 5.
    C.J. Thompson, A.L. Goertzen, J.D. Thiessen et al., Development of a PET scanner for simultaneously imaging small animals with MRI and PET. Sensors 14, 14654–14671 (2014). doi: 10.3390/s140814654 CrossRefGoogle Scholar
  6. 6.
    A. Kolb, H.F. Wehrl, M. Hofmann et al., Technical performance evaluation of a human brain PET/MRI system. Eur. Radiol. 22, 1776–1788 (2012). doi: 10.1007/s00330-012-2415-4 CrossRefGoogle Scholar
  7. 7.
    C. Bauer, A. Stolin, J. Proffitt et al., Development of a ring PET insert for MRI, in IEEE NSS/MIC Conference Record, pp. 1–9 (2013). doi: 10.1109/NSSMIC.2013.6829135
  8. 8.
    Y. Xia, T.Y. Ma, Y.Q. Liu et al., Imaging performance evaluation in depth-of-interaction PET with a new method of sinogram generation: a Monte Carlo simulation study. Nucl. Sci. Tech. 22, 144–150 (2011). doi: 10.13538/j.1001-8042/nst.22.144-150 Google Scholar
  9. 9.
    D.R. Schaart, H.T. van Dam, S. Seifert et al., A novel, SiPM-array-based, monolithic scintillator detector for PET. Phys. Med. Biol. 54, 3501–3512 (2009). doi: 10.1088/0031-9155/54/11/015 CrossRefGoogle Scholar
  10. 10.
    P. Bruyndonckx, S. Léonard, S. Tavernier et al., Neural network-based position estimators for PET detectors using monolithic LSO blocks. IEEE Trans. Nucl. Sci. 51, 2520–2525 (2004). doi: 10.1109/TNS.2004.835782 CrossRefGoogle Scholar
  11. 11.
    H. Liu, T. Omura, M. Watanabe et al., Development of a depth of interaction detector for γ-rays. Nucl. Instrum. Methods A 459, 182–190 (2001). doi: 10.1016/S0168-9002(00)00939-6 CrossRefGoogle Scholar
  12. 12.
    Y.P. Shao, X.S. Sun, K.A. Lan et al., Development of a prototype PET scanner with depth-of-interaction measurement using solid-state photomultiplier arrays and parallel readout electronics. Phys. Med. Biol. 59, 1223–1238 (2014). doi: 10.1088/0031-9155/59/5/1223 CrossRefGoogle Scholar
  13. 13.
    A. Kishimoto, J. Kataoka, T. Kato et al., Development of a dual-sided readout DOI-PET module using large-area monolithic MPPC-arrays. IEEE Trans. Nucl. Sci. 60, 38–43 (2013). doi: 10.1109/TNS.2012.2233215 CrossRefGoogle Scholar
  14. 14.
    P. Fan, T.Y. Ma, Q.Y. Wei et al., Choice of crystal surface finishing for a dual-ended readout depth-of-interaction (DOI) detector. Phys. Med. Biol. 61, 1041–1066 (2016). doi: 10.1088/0031-9155/61/3/1041 CrossRefGoogle Scholar
  15. 15.
    J. Seidel, J.J. Vaquero, S. Siegel et al., Depth identification accuracy of a three layer phoswich PET detector module. IEEE Trans. Nucl. Sci. 46, 485–490 (1999). doi: 10.1109/23.775567 CrossRefGoogle Scholar
  16. 16.
    C.M. Pepin, P. Bérard, A.L. Perrot et al., Properties of LYSO and recent LSO scintillators for phoswich PET detectors. IEEE Trans. Nucl. Sci. 51, 789–795 (2004). doi: 10.1109/TNS.2004.829781 CrossRefGoogle Scholar
  17. 17.
    M. Conti, State of the art and challenges of time-of-flight PET. Phys. Med. 25, 1–11 (2009). doi: 10.1016/j.ejmp.2008.10.001 CrossRefGoogle Scholar
  18. 18.
    R. Vinke, H. Löhner, D.R. Schaart et al., Optimizing the timing resolution of SiPM sensors for use in TOF-PET detectors. Nucl. Instrum. Methods A 610, 188–191 (2009). doi: 10.1016/j.nima.2009.05.068 CrossRefGoogle Scholar
  19. 19.
    C. Jackson, SensL B-Series and C-Series silicon photomultipliers for time-of-flight positron emission tomography. Nucl. Instrum. Methods A 787, 169–172 (2015). doi: 10.1016/j.nima.2014.11.087 CrossRefGoogle Scholar
  20. 20., J Series (High Performance/TSV)—Datasheet, 2016 May 10. Accessed 21 May 2016. (Online)
  21. 21.
    T.P. Xu, S. Wang, Q.Y. Wei et al., Development of multi-channel fast SiPM readout electronics for clinical TOF PET detector, in IEEE NSS/MIC Conference Record, pp. 1–3 (2014). doi: 10.1109/NSSMIC.2014.7431013
  22. 22.
    T.P. Xu, J. Wen, Q. Wang et al., A novel sub-millimeter resolution PET detector with TOF capability, in IEEE NSS/MIC Conference Record, pp. 1–5 (2013). doi: 10.1109/NSSMIC.2013.6829019
  23. 23.
    T. Song, H. Wu, S. Komarov et al., A submillimeter resolution PET detector module using a multipixel photon counter array. Phys. Med. Biol. 55, 2573–2587 (2010). doi: 10.1109/TNS.2015.2499726 CrossRefGoogle Scholar
  24. 24.
    S. Yamamoto, J.Y. Yeom, K. Kamada et al., Development of an ultrahigh resolution block detector based on 0.4 mm pixel Ce: GAGG scintillators and a silicon photomultiplier array. IEEE Trans. Nucl. Sci. 60, 4582–4587 (2013). doi: 10.1109/TNS.2013.2282294 CrossRefGoogle Scholar
  25. 25.
    Z. Deng, A.K. Lan, X. Sun et al., Development of an eight-channel time-based readout ASIC for PET applications. IEEE Trans. Nucl. Sci. 58, 3212–3218 (2011). doi: 10.1109/TNS.2011.2165557 CrossRefGoogle Scholar
  26. 26.
    J. Du, Y. Yang, X. Bai et al., Characterization of large-area SiPM array for PET applications. IEEE Trans. Nucl. Sci. 63, 8–16 (2016). doi: 10.1109/TNS.2015.2499726 CrossRefGoogle Scholar
  27. 27.
    V. Schulz, B. Weissler, P. Gebhard et al., SiPM based preclinical PET/MR insert for a human 3T MR: first imaging experiments, in IEEE NSS/MIC Conference Record, pp. 4467–4469 (2011). doi: 10.1109/NSSMIC.2011.6152496
  28. 28.
    Q.Y. Wei, S. Wang, T.T. Dai et al., SiPM based PET detector modules with air-gapped pixelated LYSO, in IEEE NSS/MIC Conference Record, pp. 1–3 (2014). doi:  10.1109/NSSMIC.2014.7431198
  29. 29.
    G. Stortz, M.D. Walker, C.J. Thompson et al., Characterization of a new MR compatible small animal PET scanner using Monte-Carlo simulations. IEEE Trans. Nucl. Sci. 60, 1637–1644 (2013). doi: 10.1109/TNS.2013.2256927 CrossRefGoogle Scholar
  30. 30.
    N. Zhang, C.J. Thompson, D. Togane et al., Anode position and last dynode timing circuits for dual-layer BGO scintillator with PS-PMT based modular PET detectors. IEEE Trans. Nucl. Sci. 49, 2203–2207 (2002). doi: 10.1109/TNS.2002.803815 CrossRefGoogle Scholar
  31. 31.
    X. Zhang, G. Stortz, V. Sossi et al., Development and evaluation of a LOR-based image reconstruction with 3D system response modeling for a PET insert with dual-layer offset crystal design. Phys. Med. Biol. 58, 8379 (2013). doi: 10.1088/0031-9155/58/23/8379 CrossRefGoogle Scholar
  32. 32.
    X.Z. Zhu, Z. Deng, Y. Chen et al., Development of a 64-channel readout ASIC for an 8 × 8 SiPM array for PET and TOF-PET applications. IEEE Trans. Nucl. Sci. 63, 1327–1334 (2016). doi: 10.1109/TNS.2016.2518808 CrossRefGoogle Scholar
  33. 33.
    R.T. Yao, T.Y. Ma, Y.P. Shao, Lutetium oxyorthosilicate (LSO) intrinsic activity correction and minimal detectable target activity study for SPECT imaging with a LSO-based animal PET scanner. Phys. Med. Biol. 53, 4399–4415 (2008). doi: 10.1088/0031-9155/53/16/012 CrossRefGoogle Scholar
  34. 34.
    Q.Y. Wei, T.T. Dai, T.Y. Ma et al., Crystal identification in dual-layer-offset DOI-PET detectors using stratified peak tracking based on SVD and mean-shift algorithm. IEEE Trans. Nucl. Sci. 63, 2502–2508 (2016). doi: 10.1109/TNS.2016.2590505 CrossRefGoogle Scholar
  35. 35.
    Q.Y. Wei, S. Wang, T.Y. Ma et al., Performance evaluation of a compact PET/SPECT/CT tri-modality system for small animal imaging applications. Nucl. Instrum. Methods A 786, 147–154 (2015). doi: 10.1016/j.nima.2015.03.045 CrossRefGoogle Scholar
  36. 36.
    Q.Y. Wei, S. Wang, T.Y. Ma et al., Influence factors of two dimensional position map on photomultiplier detector block designed by quadrant sharing technique. Nucl. Sci. Technol. 22, 224–229 (2011). doi: 10.13538/j.1001-8042/nst.22.224-229 Google Scholar

Copyright information

© Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Chinese Nuclear Society, Science Press China and Springer Science+Business Media Singapore 2017

Authors and Affiliations

  1. 1.School of Automatic and Electrical EngineeringUniversity of Science and Technology BeijingBeijingChina
  2. 2.Department of Engineering PhysicsTsinghua UniversityBeijingChina
  3. 3.Key Laboratory of Particle and Radiation Imaging (Tsinghua University)Ministry of EducationBeijingChina
  4. 4.Department of Radiation OncologyChina-Japan Friendship HospitalBeijingChina

Personalised recommendations