Advertisement

Journal of Plant Diseases and Protection

, Volume 126, Issue 1, pp 89–92 | Cite as

Candidatus Liberibacter solanacearum’ detected in Trioza urticae using suction trap-based monitoring of psyllids in Germany

  • M. Jennifer Sjolund
  • Yvonne M. Arnsdorf
  • Mairi Carnegie
  • Eva Fornefeld
  • Torsten WillEmail author
Short Communication

Abstract

Psyllids are small, phloem-feeding insects. Several species are vectors of economically important pathogens, such as ‘Candidatus Liberibacter solanacearum’ (CLso) and phytoplasmas. We monitored the psyllid population in Quedlinburg, Germany, using a 12.2-m suction trap from May to September 2017 in order to detect potential vectors for CLso, a pathogen of apiaceous and solanaceous crops. CLso has been previously detected in Germany in the carrot psyllid, Trioza apicalis. Psyllids were identified using a combination of morphological and molecular methods, and samples of each species were tested for CLso. No known vectors of CLso were captured. However, we detected CLso of unknown haplotype in a single individual of Trioza urticae, which mainly feeds on Urtica spp. A so-called haplotype U was recently described in Finland and was associated with Trioza urticae and Urtica dioica. This is the first report of CLso in T. urticae in Germany.

Keywords

Psyllid Sternorrhyncha Candidatus Liberibacter solanacearum CLso Vector Suction trap 

Notes

Acknowledgements

This work has been financially supported by European Union Horizon 2020 research and innovation programme under grant agreement No. 635646: POnTE (Pest Organisms Threatening Europe). We thank Kerstin Welzel for processing suction trap collections.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Bertolini E, Teresani GR, Loiseau M, Tanaka FAO, Barbe S, Martinez C, Gentit P, López MM, Cambra M (2015) Transmission of ‘Candidatus Liberibacter solanacearum’ in carrot seeds. Plant Pathol 64:276–285.  https://doi.org/10.1111/ppa.12245 CrossRefGoogle Scholar
  2. Burckhard D (2002) Vorläufiges Verzeichnis der Blattflöhe Mitteleuropas mit Wirtspflanzenangaben. Beiträge zur Zikadenkunde 5:1–9Google Scholar
  3. Burckhard D, Ouvrard D (2012) A revised classification of the jumping plant-lice (Hemiptera: Psylloidea). Zootaxa 3509:1–34.  https://doi.org/10.11646/zootaxa.3509.1.1 CrossRefGoogle Scholar
  4. Haapalainen M, Wang J, Latvala S, Lehtonen MT, Pirhonen M, Nissinen AI (2018) Genetic variation of ‘Candidatus Liberibacter solanacearum’ haplotype C and identification of a novel haplotype from Trioza urticae and stinging nettle. Phytopathology.  https://doi.org/10.1094/PHYTO-12-17-0410-R Google Scholar
  5. Jarausch B, Burckhard D, Lauterer P (2009) Psyllids (Hemiptera, Psylloidea) captured in commercial apple and stone fruit orchards in southwest Germany, eastern France and northwest Switzerland. J Swiss Entomol Soc 82:205–215.  https://doi.org/10.5169/seals-402990 Google Scholar
  6. Li W, Abad JA, French-Monar RD, Rascoe J, Wen A, Gudmestad NC, Gudmestad NC, Secor GA, Lee I, Duan Y, Levy L (2009) Multiplex real-time PCR for detection, identification and quantification of “Candidatus Liberibacter solanacearum” in potato plants with zebra chip. J Microbiol Meth 78:59–65.  https://doi.org/10.1016/j.mimet.2009.04.009 CrossRefGoogle Scholar
  7. Loiseau M, Renaudin I, Cousseau-Suhard P, Poliakoff F, Gentit P (2017a) Transmission tests of ‘Candidatus Liberibacter solanacearum’ by carrot seeds. Acta Hortic 1153:41–46CrossRefGoogle Scholar
  8. Loiseau M, Renaudin I, Cousseau-Suhard P, Lucas P-M, Forveille A, Gentit P (2017b) Lack of evidence of vertical transmission of ‘Candidatus Liberibacter solanacearum’ by carrot seeds suggests that seed is not a major transmission pathway. Plant Dis 101:2104–2109CrossRefGoogle Scholar
  9. Löw F (1880) Mittheilungen über Psylloden. Verhandlungen der Zoologischbotanischen Gesellschaft in Wien 29:549–598Google Scholar
  10. Löw F (1887) Uebersicht der Psylliden von Oesterreich-Ungarn mit Einschluss von Bosnien und der Herzegowina, nebst Beschreibung neuer Arten. Verhandlungen der Kaiserlich-Königlichen Zoologisch-Botanischen Gesellschaft in Wien 38:5–40Google Scholar
  11. Munyaneza JE, Fisher TW, Sengoda VG, Garczynski SF, Nissinen A, Lemmetty A (2010) First report of “Candidatus Liberibacter solanacearum” associated with psyllid-affected carrots in Europe. Plant Dis 94:639.  https://doi.org/10.1094/PDIS-94-5-0639A CrossRefGoogle Scholar
  12. Munyaneza JE, Swisher KD, Hommes M, Willhauck A, Buck H, Meadow R (2015) First report of ‘Candidatus Liberibacter solanacearum’ associated with psyllid-infested carrots in Germany. Plant Dis 99:1269.  https://doi.org/10.1094/PDIS-02-15-0206-PDN CrossRefGoogle Scholar
  13. Nelson WR, Fisher TW, Munyaneza JE (2011) Haplotypes of “Candidatus Liberibacter solanacearum” suggest long-standing separation. Eur J Plant Pathol 130:5–12CrossRefGoogle Scholar
  14. Nelson WR, Gounder VS, Alfaro-Fernández A, Font MI, Crosslin JM, Munyaneza JE (2013) A new haplotype of “Candidatus Liberibacter solanacearum” identified in the Mediterranean region. Eur J Plant Pathol 135:633–639.  https://doi.org/10.1007/s10658-012-0121-3 CrossRefGoogle Scholar
  15. Nissinen AI, Haapalainen M, Jauhiainen L, Lindman M, Pirhonen M (2014) Different symptoms in carrots caused by male and female carrot psyllid feeding and infection by ‘Candidatus Liberibacter solanacearum’. Plant Pathol 63:812–820.  https://doi.org/10.1111/ppa.12144 CrossRefGoogle Scholar
  16. Ouvrard D (2018) Psyl’list—the world psylloidea database.  https://doi.org/10.5519/0029634. www.hemiptera-databases.com/psyllist. Accessed 30 Jan 2018
  17. Secor GA, Rivera VV, Abad JA, Lee I-M, Clover GRG, Liefting LW, Li X, De Boer SH (2009) Association of ‘Candidatus Liberibacter solanacearum’ with Zebra Chip Disease of potato established by graft and psyllid transmission, electron microscopy, and PCR. Plant Dis 93:574–583.  https://doi.org/10.1094/PDIS-93-6-0574 CrossRefGoogle Scholar
  18. Sjölund MJ, Kenyon DM, Highet F, Ouvrard D (2016) Developing an RT-PCR assay for the identification of psyllid species. In: Proceedings crop protection in Northern Britain, pp 279–282Google Scholar
  19. Teresani G, Bertolini E, Alfaro-Fernanndez A, Martinez C, Tanaka FAO, Kitajima EW, Roselló M, Sanjuán S, Ferrándiz JC, López MM, Cambra M, Font MI (2014) Association of ‘Candidatus Liberibacter solanacearum’ with a vegetative disorder of celery in Spain and development of real-time PCR method for its detection. Phytopathology 104:804–811.  https://doi.org/10.1094/PHYTO-07-13-0182-R CrossRefGoogle Scholar
  20. Weintraub PG, Beanland L (2006) Insect vectors of phytoplasmas. Annu Rev Entomol 51:91–111.  https://doi.org/10.1146/annurev.ento.51.110104.151039 CrossRefGoogle Scholar

Copyright information

© Deutsche Phytomedizinische Gesellschaft 2018

Authors and Affiliations

  • M. Jennifer Sjolund
    • 1
  • Yvonne M. Arnsdorf
    • 1
  • Mairi Carnegie
    • 1
  • Eva Fornefeld
    • 2
  • Torsten Will
    • 3
    Email author
  1. 1.Science and Advice for Scottish Agriculture (SASA)EdinburghUK
  2. 2.Institute for National and International Plant HealthJulius Kuehn-Institute (JKI)BraunschweigGermany
  3. 3.Institute for Resistance Research and Stress ToleranceJulius Kuehn-Institute (JKI)QuedlinburgGermany

Personalised recommendations