Advertisement

Effects of insecticidal seed treatments and foliar sprays in winter oilseed rape in autumn on insect pests and TuYV infection

  • Nils Conrad
  • Meike Brandes
  • Torsten Will
  • Joseph-Alexander Verreet
  • Bernd Ulber
  • Udo Heimbach
Original Article
  • 62 Downloads

Abstract

In this study, the effect of the four different insecticides Karate Zeon (a.i. lambda-cyhalothrin), Elado (clothianidin + beta-cyfluthrin), Fortenza Force (cyantraniliprole + tefluthrin) (only 2015), and Lumiposa (cyantraniliprole) (only 2016 and 2017) on the insect autumn pests Delia radicum, Psylliodes chrysocephala, and aphids (mainly Myzus persicae) and Turnip Yellows Virus in winter oilseed rape was investigated in 3 years of field trials. The results showed that the effects of the Elado seed treatment on P. chrysocephala depend on the time of migration of adults. Due to delayed immigration of beetles into the field in 2015/2016 and 2017/2018, there was no clear effect of the seed treatment on the number of larvae per plant. In contrast in 2016/2017, the beetles colonized the crop in early September, and the number of larvae was significantly reduced by Elado. Cyantraniliprole and clothianidin seed treatments seem to support crop emergence independent of insect pests assessed. Spraying of the pyrethroid Karate Zeon in autumn significantly decreased the number of larvae in all years. Also the number of next-generation beetles was significantly reduced only by Karate Zeon. In all years, the aphid infestation was significantly reduced only by Elado seed treatment. The infection rate by TuYV was very high in all years and only slightly reduced by Elado seed treatment. There was only minimal occurrence of Delia radicum in all years. Cyantraniliprole products did not show any influence on the assessed insect pests in all years. There was no significant effect of any treatment on yield, but in 2015/2016 and 2016/2017, the highest yield was obtained in the Elado seed treatment.

Keywords

Psylliodes chrysocephala Myzus persicae Pyrethroid Neonicotinoid Diamid Seed treatment 

Notes

Acknowledgements

Thanks to all students and research assistants for their work in the field and laboratory. Thanks to UFOP (Union for Promoting Oil and Protein Plants e.V.) for financial support.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Alford DV, Nilsson C, Ulber B (2003) Insect pests of winter oilseed rape crops. In: Alford DV (ed) Biocontrol of oilseed rape pests. Blackwell Science, Oxford, pp 9–41CrossRefGoogle Scholar
  2. Baroso JM (2013) Commission implementing regulation (EU) no 485/2013 of 24 May 2013. Off J Eur Union 139:12–26Google Scholar
  3. Bonnemaison L, Jourdheuil P (1954) L’altise d’hiver du colza (Psylliodes chrysocephala L.). Annales des Épiphyties 4:345–524Google Scholar
  4. Clark MF, Adams AN (1977) Characteristics of the microplate method of enzyme-linked immunosorbent assay for the detection of plant viruses. J Gen Virol 34:475–483CrossRefPubMedGoogle Scholar
  5. Dewar AM (2017) The adverse impact of the neonicotinoid seed treatment ban on crop protection in oilseed rape in the United Kingdom. Pest Manag Sci 73:1305–1309.  https://doi.org/10.1002/ps.4511 CrossRefPubMedGoogle Scholar
  6. Ellis S (2015) Maximising control of cabbage stem flea beetles (CSFB) without neonicotinoid seed treatments. AHDB project report no. 546Google Scholar
  7. EPPO, European and Mediterranean Plant Protection Organization (2001) Psylliodes chrysocephala: PP 1/73(3); EPPO Standards PP1. 2nd edn, vol 3, pp 95–97Google Scholar
  8. EPPO, European and Mediterranean Plant Protection Organization (2007) Delia radicum on oilseed rape: PP 1/259 (1). EPPO Bull 37:491–494.  https://doi.org/10.1111/j.1365-2338.2007.01155.x CrossRefGoogle Scholar
  9. Godan D (1950) Über die Wirkung des Rapserdflohlarven-Befalls auf die Rapspflanze. Mitteilungen aus der Biologischen Zentralanstalt für Land- und Forstwirtschaft, Berlin-Dahlem (69)Google Scholar
  10. Godan D (1951) Über den Einfluß hoher und tiefer Temperaturen auf die Entwicklungsstadien des Rapserdflohs (Psylliodes chrysocephala L.). Zeitschrift für Pflanzenbau und Pflanzenschutz 45:169–178Google Scholar
  11. Heimbach U, Brandes M (2016) Pyrethroid resistance of insect pests in oilseed rape in Germany since 2005. IOBC WPRS Bull 116:17–22Google Scholar
  12. Heimbach U, Eggers C, Thieme T (2002) Aphids in oil seed rape in autumn possibilities to reduce virus transmission. IOBC-WPRS Bull 25:123–131Google Scholar
  13. Heimbach U, Brandes M, Conrad N, Ulber B (2016) Would more data on the population dynamics of insect pests in oilseed rape support better decision support in IPM? IOBC WPRS Bull 116:43Google Scholar
  14. Hoßfeld R (1993) Die Gelbschale als Entscheidungshilfe bei der Bekämpfung des Rapserdflohs (Psylliodes chrysocephala L.) [The use of yellow water dishes as a decision aid for the control of Psylliodes chrysocephala L.]. Gesunde Pflanzen 45:291–295Google Scholar
  15. IRAC, Insecticide Resistance Action Committee (2012) Major mechanisms of insecticide resistance in green peach aphid Myzus persicae Sulzer. http://www.irac-online.org/GGTSPU-styx2.jki.bund.de-14674-10611698-Ea9bIevl0viUUoo5-DAT/content/uploads/myzus_r_mechanisms_poster_v8.4_14March12.pdf. Accessed 1 Nov 2017
  16. Johnen A, Meier H (2000) A weather-based decision support system for managing oilseed rape pests. Br Crop Prot Conf Pests Dis 2000:793–800Google Scholar
  17. Kaufmann O (1941) Zur Biologie des Rapserdflohs (Psylliodes chrysocephala L.). Z Pflanzenkr Pflanzenschutz 51:305–324Google Scholar
  18. Mathiasen H, Sørensen H, Bligaard J, Esbjerg P (2015a) Effect of temperature on reproduction and embryonic development of the cabbage stem flea beetle, Psylliodes chrysocephala L., (Coleoptera: Chrysomelidae). J Appl Entomol 139:600–608.  https://doi.org/10.1111/jen.12201 CrossRefGoogle Scholar
  19. Mathiasen H, Bligaard J, Esbjerg P (2015b) Survival of cabbage stem flea beetle larvae, Psylliodes chrysocephala, exposed to low temperatures. Entomol Exp Appl 157:220–226.  https://doi.org/10.1111/eea.12351 CrossRefGoogle Scholar
  20. Nilson C (2002) Strategies for the control of cabbage stem flea beetle on winter rape in Sweden. IOBC WPRS Bull 25:133–139Google Scholar
  21. Nilsson C (1990) Yield losses in winter rape caused by cabbage stem flea beetle larvae (Psylliodes chrysocephala (L.)). IOBC WPRS Bull 13:53–56Google Scholar
  22. Noleppa S (2017) Banning neonicotinoids in the European Union: An ex-post assesment of economic and environmental costs: HFFA research paper 01/2017Google Scholar
  23. Nuss H (2004) Einfluss der Pflanzendichte und –architektur auf Abundanz und innerpflanzliche Verteilung stängelminierender Schadinsekten in Winterraps. Dissertation, Georg-August-Universität GöttingenGoogle Scholar
  24. Purvins G (1986) The influence of cabbage stem flea beetle (Psylliodes chrysocephala L.) on yields of oilseedrape. Br Crop Prot Conf Pests Dis 1986:753–759Google Scholar
  25. Schliephake E, Graichen K, Rabenstein F (2000) Investigations on the vector transmission of the Beet mild yellowing virus and the Turnip yellows virus. Z Pflanzenkr Pflanzenschutz 107:81–87Google Scholar
  26. Schott H (1959) Epidmiologie des Rapserdflohes (Psylliodes chrysocephala L.). Dissertation, Humboldt—Universität zu BerlinGoogle Scholar
  27. Schulz R-R (1983) Zur Biologie, Ökologie und Schadwirkung des Rapserdflohs (Psylliodes chrysocephala L.) an Winterraps (Brassica napus L. oleifera Metzg.). Dissertation, Wilhelm-Piek-Universität RostockGoogle Scholar
  28. Stevens M, McGrann G, Clark B (2008) Turnip yellows virus (syn Beet western yellows virus): an emerging threat to European oilseed rape. HGCA Res Rev 69:36Google Scholar

Copyright information

© Deutsche Phytomedizinische Gesellschaft 2018

Authors and Affiliations

  • Nils Conrad
    • 1
    • 3
  • Meike Brandes
    • 1
  • Torsten Will
    • 2
  • Joseph-Alexander Verreet
    • 3
  • Bernd Ulber
    • 4
  • Udo Heimbach
    • 1
  1. 1.Institute for Plant Protection in Field Crops and GrasslandJulius Kühn-InstitutBraunschweigGermany
  2. 2.Institute for Resistance Research and Stress ToleranceJulius Kühn-InstitutQuedlinburgGermany
  3. 3.Institute of PhytopathologyChristian-Albrechts-Universität zu KielKielGermany
  4. 4.Section of Agricultural Entomology, Department for Crop SciencesGeorg-August-Universität GöttingenGöttingenGermany

Personalised recommendations