Advertisement

Journal of Plant Diseases and Protection

, Volume 123, Issue 4, pp 171–176 | Cite as

Efficacy of copper alternatives applied as stop-sprays against Plasmopara viticola in grapevine

  • Kathrin Lukas
  • Gerd Innerebner
  • Markus Kelderer
  • Maria R. Finckh
  • Pierre Hohmann
Original Article
  • 117 Downloads

Abstract

The six products, Armicarb, Vitisan, lime sulphur, Caso, Calce Fiocco and Ulmasud, were tested for their ability to control downy mildew (Plasmopara viticola) on grapevine (Vitis vinifera) in order to find effective alternatives to copper, a heavy metal that is commonly used as a fungicide in organic viticulture. Each product was applied to potted grapevines at (1) 40° h (degree hours) and (2) 80° h after inoculation (ai) of the pathogen. These so-called stop-sprays were tested on plants that received two different P. viticola inoculum rates. The formulated potassium bicarbonate product Armicarb and lime sulphur reduced disease incidence and severity similar to or better than the copper hydroxide treatment. Armicarb and lime sulphur reduced disease incidence by up to 46 and 22 %, respectively, and disease severity by up to 73 and 77 %, respectively. However, observed effects were depending on both inoculum rates and time of application. Overall, the results indicate that the tested products showed higher efficacy when applied 40° h ai and when the pathogen was applied at the high inoculum rate, however, that was not always the case. The unformulated potassium bicarbonate product Vitisan and other products based on calcium chloride, calcium hydroxide and acid clay did not reliably affect disease incidence and severity. Possible roles of inoculum density, wetting agents and sprinkler usage during the infection procedure are discussed.

Keywords

Acid clay Calcium chloride Calcium hydroxide Calcium polysulphide Copper hydroxide Peronospora Potassium bicarbonate Potted grapevines 

Abbreviations

°h

Degree hours

ai

After inoculation

DLA

Diseased leaf area

Notes

Acknowledgments

We thank Christian Roschatt (Research Centre Laimburg) for technical support. This work was funded within the CO-FREE project of the EU’s Seventh Framework Programme for research, technological development and demonstration under Grant Agreement No. 289497 and financially supported by the Research Centre Laimburg.

References

  1. 1.
    Reisenzein H, Polesny F, Höbaus E (2008) Krankheiten, Schädlinge und Nützlinge im Weinbau. Österreichischer Agrarverlag, WienGoogle Scholar
  2. 2.
    Hofmann U (2003b) Copper reduction and replacement in organic viticulture: results of eleven years of round robin tests. In: Alternativen zur Anwendung von Kupfer als Pflanzenschutzmittel. Saphir, Ribbesbüttel. Berichte aus der Biologischen Bundesanstalt 118, pp 27–37Google Scholar
  3. 3.
    Schmidt-Tiedemann A, Ebersberger D, Köglmeier W (2003) Status Quo of organic viticulture in Germany: structure, development, problems. Bundesanstalt für Landwirtschaft und Ernährung, Geschäftsstelle Bundesprogramm Ökologischer Landbau, Bonn. www.orgprints.org. 17 Feb 2015
  4. 4.
    Wilbois KP, Kauer R, Fader B, Kienzle J, Haug P, Fritzsche-Martin A, Drescher N, Reiners E, Röhrig P (2009) Kupfer als Pflanzenschutzmittel unter besonderer Berücksichtigung des Ökologischen Landbaus. J für Kulturpflanzen 61(4):140–152Google Scholar
  5. 5.
    BVL (Bundesamt für Verbraucherschutz und Lebensmittelsicherheit), (2015) Zugelassene Pflanzenschutzmittel. Auswahl für den ökologischen Landbau nach der Verordnung (EG) Nr. 834/2007. Bundesamt für Verbraucherschutz und Lebensmittelsicherheit, Braunschweig. www.bvl.bund.de. 17 Feb 2015
  6. 6.
    Innerebner G, Roschatt C (2014) Kupferpräparate im Test. Südtirol Landwirt 7:1–3Google Scholar
  7. 7.
    Steindl A, Riepert F, Strumpf T (2010) Kupfer- und andere Schwermetallverbindungen in Weinbergsböden und ihre Auswirkungen auf die Bodenzönose. Ber Jul Kühn-Institut 157:13–14Google Scholar
  8. 8.
    BÖLW (2010) Strategiepapier zu Kupfer als Pflanzenschutzmittel unter besonderer Berücksichtigung des Ökologischen Landbaus. Bund Ökologischer Lebensmittelwirtschaft, Berlin. http://kupfer.jki.bund.de. 17 Feb 2015
  9. 9.
    Jänsch S, Römbke J (2009) Einsatz von Kupfer als Pflanzenschutzmittel-Wirkstoff: Ökologische Auswirkungen der Akkumulation von Kupfer im Boden. Research report 360 03040. Umweltbundesamt für Mensch und Umwelt, Dessau-Roßlau. http://kupfer.jki.bund.de. 17 Feb 2015
  10. 10.
    Brun LA, Maillet J, Richarte J, Herrmann P, Remy JC (1998) Relationships between extractable copper, soil properties and copper uptake by wild plants in vineyard soils. Environ Pollut 102:151–161CrossRefGoogle Scholar
  11. 11.
    Rusjan D, Strlič M, Pucko D, Korošec-Koruza Z (2007) Copper accumulation regarding the soil characteristics in sub-Mediterranean vineyards of Slovenia. Geoderma 141:111–118CrossRefGoogle Scholar
  12. 12.
    Strumpf T, Steindl A, Strassemeyer J, Riepert F (2011) Erhebung von Kupfergesamtgehalten in ökologisch und konventionell bewirtschafteten Böden. Teil 1: Gesamtgehalten in Weinbergsböden deutscher Qualitätsanbaugebiete. J für Kulturpflanzen 63(5):131–143Google Scholar
  13. 13.
    Hofmann U (2009) Optimierung der Peronospora, Plasmopara viticola Bekämpfung im ökologischen Weinbau: Pflanzenbauliche Maßnahmen, Kupferreduzierung, Einsatz von Kupferalternativen. BIO-AUSTRIA, St. Pölten, 26–27 Feb 2009Google Scholar
  14. 14.
    Kühne S, Nürnberg M, Rahmann G, Töpfer A (2012) Kupferhaltige Pflanzenschutzmittel: Perspektiven. Ökol Landbau 1:6–7Google Scholar
  15. 15.
    Nannen DU, Riecken I, Lehne J (2010) Technical copper minimising strategies to keep an old friend going. In: Proceedings of the Ecofruit 2010: 14th international conference on cultivation technique and phytopathological problems in organic fruit-growing, Weinsberg, 22–24 Feb 2010, pp 45–51Google Scholar
  16. 16.
    Pertot I, El Bilali H, Simeon V, Vecchione A, Zulini L (2006) Efficacy evaluation and phytotoxicity assessment of traditional and new copper compounds used in copper reduction strategies in organic viticulture in northern and southern Italy environments. Integr Prot Vitic IOBC/WPRS Bull 29(11):61–65Google Scholar
  17. 17.
    Dagostin S, Schärer HJ, Pertot I, Tamm L (2011) Are there alternatives to copper for controlling grapevine downy mildew in organic viticulture? Crop Prot 20:776–788CrossRefGoogle Scholar
  18. 18.
    La Torre A, Mandalá C, Caradonia F, Battaglia V (2011) Pluriennal trials for the control of grapevine downy mildew with natural products. In: Proceedings of the PAV: 17th GIESCO Meeting, Alba-Alba, pp 107–110Google Scholar
  19. 19.
    La Torre A, Talocci S, Spera G, Valori R (2008) Control of downy mildew on grapes in organic viticulture. Commun Agric Appl Biol Sci 73(2):169–178PubMedGoogle Scholar
  20. 20.
    Schilder AMC, Gillett JM, Sysak RW, Wise JC (2002) Evaluation of environmentally friendly products for control of fungal diseases of grapes. In: Proceedings of the Ecofruit: 10th international conference on cultivation technique and phytopathological problems in organic fruit-growing and viticulture, Weinsberg, Germany, 4–7 Feb 2002, pp 163–167Google Scholar
  21. 21.
    Dorn B, Musa T, Krebs H, Men Fried P, Forrer HR (2007) Control of late blight in organic potato production: evaluation of copper-free preparations under field, growth chamber and laboratory conditions. Eur J Plant Pathol 119(2):217–240CrossRefGoogle Scholar
  22. 22.
    Kelderer M, Lardschneider E, Casera C (2008) Formulated and unformulated carbonates to control apple scab (Venturia inaequalis) on organic apple. In: Proceedings of the Ecofruit 2008: 13th international conference on cultivation technique and phytopathological problems in organic fruit-growing, Weinsberg, 18–20 Feb 2008, pp 47–53Google Scholar
  23. 23.
    Hofmann U (2003a) On field trials to optimize the downy and powdery mildew control in organic viticulture: alternative strategies to copper and sulfur use. Final report. ECO-CONSULT—Internationale Beratung im ökologischen Weinbau, Geisenheim. www.orgprints.org. 17 Feb 2015
  24. 24.
    Holb IJ, De Jong PF, Heijne B (2003) Efficacy and phytotoxicity of lime sulphur in organic apple production. Ann Appl Biol 142(2):225–233CrossRefGoogle Scholar
  25. 25.
    Kopp B (2004) Reduction of the ascospore potential by calcium. In: Proceedings of the Ecofruit 2004: 11th international conference on cultivation technique and phytopathological problems in organic fruit-growing, Weinsberg, 3–5 Feb 2004, pp 85–86Google Scholar
  26. 26.
    Weitbrecht K, Schmidt C, Kassemeyer HH (2014) Reduction of copper containing plant protection products in ecological viticulture: investigation of innovative copper formulation with high reduction potential and development of stringent strategies for their use. Final report. Staatliches Weinbauinstitut FreiburgGoogle Scholar
  27. 27.
    Kassemeyer HH (2003) Erarbeitung von wissenschaftlichen Ansätzen zur biologischen Kontrolle der Rebenperonospora und für Strategien zu deren Regulierung im ökologischen Weinbau. Final report. Bundesanstalt für Landwirtschaft und Ernährung (BLE), Geschäftsstelle Bundesprogramm Ökologischer Landbau, BonnGoogle Scholar
  28. 28.
    Kelderer M, Lardschneider E, Casera C (1997) Schorfregulierung: Verschiedene Kupferformulierungen. Alternativen zum Kupfer: gezielte Behandlung. In: Proceedings of the Ecofruit 1997: 8th international conference on cultivation technique and phytopathological problems in organic fruit-growing, Weinsberg, 13–14 Nov 1997, pp 9–14Google Scholar
  29. 29.
    Kelderer M, Lardschneider E, Casera C (2000) Zwei Jahre Erfahrungen mit der gezielten Schorfbekämpfung durch die Oberkronenberegnung. In: Proceedings of the 9 Internationale Erfahrungsaustausch über Forschungsergebnisse zum Ökologischen Obstbau, Weinsberg, pp 5–11Google Scholar
  30. 30.
    Kunz S, Mögel G, Hinze M, Volk F (2008) Control of apple scab by curative applications of biocontrol agents. In: Proceedings of the Ecofruit 2008: 13th international conference on cultivation technique and phytopathological problems in organic fruit-growing, Weinsberg, 18–20 Feb 2008, pp 62–67Google Scholar
  31. 31.
    Denzer H (1991) Resistenz von Rebsorten gegen Plasmopara viticola. Ph.D. thesis, Gießen UniversityGoogle Scholar
  32. 32.
    Roschatt C, Haas E (2009) Kurative Wirkung verschiedener Präparate gegen Peronospora auf Topfreben. Obstbau/Weinbau 46(4):156–158Google Scholar
  33. 33.
    Unterstenhöfer G (1963) Die Grundlagen des Pflanzenschutz-Freilandversuches. Pflanzenschutznachrichten “Bayer”, LeverkusenGoogle Scholar
  34. 34.
    Olsen CH (2003) Review of the use of statistics in infection and immunity. Infect Immun 71:6689–6692CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Stähler Swiss (2015) Armicarb. Technical sheet. www.staehler.ch. 03 Sept 2015
  36. 36.
    Börner H (2009) Pflanzenkrankheiten und Pflanzenschutz. Axel Springer, BerlinCrossRefGoogle Scholar
  37. 37.
    Stark-Urnau M, Seidel M, Kast WK, Gemmerich AR (2010) Studies on the genetic diversity of primary and secondary infections of P. viticola using RADP/PCR. Vitis 39(4):163–166Google Scholar
  38. 38.
    Kast WK (2000) Investigations on the effect of extremely low copper doses and different copper formulations. In: Willer H, Meier U (ed) 2000: proceedings of the 6th international congress on organic viticulture, Basel, 25–26 Aug 2000, SÖL special issue 77, pp 175–176Google Scholar

Copyright information

© Deutsche Phythomedizinische Gesellschaft 2016

Authors and Affiliations

  • Kathrin Lukas
    • 1
    • 2
  • Gerd Innerebner
    • 1
  • Markus Kelderer
    • 1
  • Maria R. Finckh
    • 2
  • Pierre Hohmann
    • 3
    • 4
  1. 1.Research Centre for Agriculture and ForestryAuerItaly
  2. 2.Faculty of Organic Agricultural Sciences, Ecological Plant ProtectionUniversity of KasselWitzenhausenGermany
  3. 3.Faculty of Organic Agricultural Sciences, Organic Plant Breeding and AgrobiodiversityUniversity of KasselWitzenhausenGermany
  4. 4.Department of Crop SciencesResearch Institute of Organic AgricultureFrickSwitzerland

Personalised recommendations