Advertisement

Spatial Information Research

, Volume 27, Issue 5, pp 505–520 | Cite as

Morphometric analysis and the validity of Hortonian postulations in Anambra drainage basin, Nigeria

  • Chinero Nneka AyoguEmail author
  • Philip Ogbonna Phil-Eze
  • Nnadozie Onyekachi Ayogu
  • Rapheal Iweanya Maduka
Article
  • 50 Downloads

Abstract

Anambra drainage basin is decimated by a plethora of rivers emanating from heavy rainfall and fluvio-geomorphic surface processes. Apparently, hydrologic and sedimentologic processes influences basin form and processes which are governed by laws of drainage basin composition postulated by Horton. Metrical dimension provides linearity, topographic and area variables used to validate Horton’s postulates in the Anambra drainage basin. Topographic tools and ARC GIS 10.2 were utilized. The stream number, length and areal quantities showed that the three laws of drainage basin composition postulated by Horton are valid. It is a 6th order dendritic pattern with elongated shape and coarse texture. The drainage density, stream frequency and infiltration number were with low values: 0.10, 0.10 and 0.27 respectively while the overland processes recorded 0.51, implying heavy dissection. The constant of channel maintenance is 0.99 km2. The relief characteristics indicated a low relief. The significance of the morphometric attributes of the Anambra drainage basin has a lot of implications in agricultural practice and erosion processes.

Keywords

Anambra drainage basin Morphometric parameters Stream order Relief Horton’s laws 

Notes

References

  1. 1.
    Horton, R. E. (1932). Drainage basin characteristics. Transactions American Geophysical Union, 13, 348–352.Google Scholar
  2. 2.
    Horton, R. E. (1945). Erosional development of streams and their drainage basins: Hydrophysical approach to quantitative morphology. Geological Society of America Bulletin, 5, 275–370.Google Scholar
  3. 3.
    Strahler, A. N. (1952). Hypsometric (area-altitude) analysis of erosional topography. Geological Society of America Bulletin, 63, 1117–1142.Google Scholar
  4. 4.
    Strahler, A. N. (1964). Quantitative geomorphology of drainage basins and channel networks: Handbook of applied hydrology (section 4). New York: McGraw Hill book Company.Google Scholar
  5. 5.
    Miller, V. C. (1953). A quantitative geomorphic study of drainage basin characteristics in the Clinch area. Virginia and Tennessee. In Technical report 3, Office of Natural Research, Department of Geology, Columbia University.Google Scholar
  6. 6.
    Ofomata, G. E. K., & Umeuduji, J. E. (1994). Topographic constraints to urban land uses in Enugu, Nigeria. Landscape and Urban Planning, 28, 129–141.Google Scholar
  7. 7.
    Praveen, K. R., Kshitiji, M., Sameer, M., Aariz, A., & Varun, N. M. (2014). A GIS-based approach in drainage morphometric analysis of Kanhar, River Basin, India. Applied Water Science.  https://doi.org/10.1007/s/13201-014-0238y.CrossRefGoogle Scholar
  8. 8.
    Aisueogun, A. O., & Ezekwe, I. C. (2013). Application of basin morphometry laws in catchments of the south western quadrangle of south-eastern Nigeria. Frontiers of Earth Sciences, 7(3), 361–374.  https://doi.org/10.1007/S11707-013-0356-0.CrossRefGoogle Scholar
  9. 9.
    Knighton, D. (1984). Fluvial forms and processes. Chapman and Hall: Rutledge, New York.Google Scholar
  10. 10.
    Babu, K. J., Sreekumar, S., & Arish, A. (2014). Implications of drainage basin parameters of a tropical river basin, South of India. Applied Water Science.  https://doi.org/10.1007/s3201-041-0212-8.CrossRefGoogle Scholar
  11. 11.
    Zavoianu, I. (1985). Development in water science. New York: Elsevier.Google Scholar
  12. 12.
    Zerinitz, E. R. (1932). Drainage patterns and their significance. Journal of Geology, 40, 498–521.Google Scholar
  13. 13.
    Bloom, A. L. (1999). Geomorphology: A systematic analysis of late Cenozoic lands (3rd ed., p. 482). Prentice Hall.Google Scholar
  14. 14.
    Igwe, O. (2015). The geotechnical characteristics of landslides on the sedimentary and metamorphic terrains of south-east Nigeria, West-Africa. Geoenvironmental Disasters.  https://doi.org/10.1186/s40677-014.0008-2.CrossRefGoogle Scholar
  15. 15.
    Igwe, O., Mode, W., Nnebedum, O., Okonkwo, I., & Oha, I. (2015). The mechanism and characteristics of complex rock-debris avalanche at the Nigeria–Cameroon border, West Africa. Geomorphology, 234, 1–10.Google Scholar
  16. 16.
    Anyadaike, R. N. C., & Phil-Eze, P. O. (1989). Runoff response to basin parameters in Southern Nigeria. Geografiska Annalar, 71(1–2), 75–84.Google Scholar
  17. 17.
    Reyment, R. A. (1965). Aspects of the geology of Nigeria (p. 145). Ibadan: University Press.Google Scholar
  18. 18.
    Kogbe, C. A. (1981). Attempt to correlate the stratigraphic sequence in the middle Benue basin with those of the Anambra and upper Benue basins. Earth Evolution Sciences, 1(2), 139–148.Google Scholar
  19. 19.
    Umeji, A. C. (2002). Geology. In G. E. K. Ofomata (Ed.), A survey of the Igbo nation (pp. 56–72). Onitsha: Africana First Publishers Ltd.Google Scholar
  20. 20.
    Nwachukwu, S. O. (1972). The tectonic evolution of the southern portion of the Benue Trough, Nigeria. Nigerian Geological Magazine, 109, 411–419.Google Scholar
  21. 21.
    Ireland, D. H. (1962). The little dry season of southern Nigeria. Nigerian Geographical Journal, 5(1), 7–21.Google Scholar
  22. 22.
    Monanu, S., & Inyang, F. (1975). Climatic regimes. In G. E. K. Ofomata (Ed.), Nigeria in maps (pp. 27–29). Benin: Ethiope Publishing House.Google Scholar
  23. 23.
    Maduka, R. I., Ayogu, N. O., Ayogu, C. N., & Gbakurun, G. A. (2016). Role of smectite-rich shales in frequent foundation failures in southeast Nigeria. Journal of Earth System Science, 125(6), 1215–1233.  https://doi.org/10.1007/s12040-0727.CrossRefGoogle Scholar
  24. 24.
    Prankjit, A., & Kummar, P. (2009). GIS based morphometric analysis of five major sub-water shed of Song River, Dehrandun, district, Uttarakhand with special reference to landslide incidences. Journal of the Indian Society of Remote Sensing, 37, 157–166.Google Scholar
  25. 25.
    Bauer, B. (1980). Drainage density: An integrative measure of the dynamics and quality of watersheds. Geomorphology, 24(3), 261–272.Google Scholar
  26. 26.
    Schumn, S. A. (1956). Evaluation of drainage systems and slopes in badlands at Perth Amboy, New Jersey. Bulletin of the Geological Society of America, 67, 597–646.Google Scholar
  27. 27.
    Chorley, R. J. (Ed.). (1969). The drainage basin as the fundamental geomorphic unit. In Water earth and man: A synthesis of hydrology, geomorphology and socio-economic geography (pp. 77–99). London: Methuen.Google Scholar
  28. 28.
    Smith, K. G. (1950). Standard for grading texture of erosional topography. American Journal of Science, 248, 655–668.Google Scholar
  29. 29.
    Snehal, J. I., & Babar, M. (2013). Morphometric analysis with reference to hydrogeological repercussion on Domri river sub-basin of Sindphana river basin, Maharashtra, India. Journal of Geosciences, 1, 29–35.Google Scholar
  30. 30.
    Morisawa, J. E. (1968). Streams, dynamics and morphology (pp. 163–164). New York: McGraw Hill.Google Scholar
  31. 31.
    Schumm, S. A. (1977). The fluvial system. New York: Wiley.Google Scholar
  32. 32.
    Wandre, S. S., & Rank, H. D. (2013). Assessment of morphometric characteristics of Shetrunji River basin using remote sensing and geographic information system (GIS). African Journal of Agricultural Research, 8(18), 2003–2015.  https://doi.org/10.5897/AJARD2013.730.CrossRefGoogle Scholar
  33. 33.
    Suresh, R. (2002). Soil and water conservation engineering (pp. 793–812). Delhi: Standard Publishers distributors.Google Scholar
  34. 34.
    Strahler, A. N. (1957). Quantitative analysis of watershed geomorphology. Transactions American Geophysical Union, 38, 913–920.Google Scholar
  35. 35.
    Golekar, R. B., Barde, M. V., & Patil, S. N. (2003). Morphometric analysis, hydrological implication; Anjani and Jhri River basins. Applied Science Research, 5(21), 33–41.Google Scholar
  36. 36.
    Bowden, F. P., & Tabor, D. (1964). Friction and lubrication of solids. Oxford: Oxford University Press.Google Scholar
  37. 37.
    Magesh, N. S., Jitheshlal, K. V., Chandraseker, N., & Jini, K. V. (2013). Geographical information system based morphometric analysis of Bharathapuzha River Basin, Kerala, India. Applied Water Science, 1(11), 4.  https://doi.org/10.1007/s13201-013-0095-0.CrossRefGoogle Scholar
  38. 38.
    Chitra, C., Alaguraja, P., Ganeshkumari, K., Yuvaraj, D., & Manivel, M. (2011). Watershed characteristics of Kundah sub basin using remote sensing and GIS techniques. International Journal of Geomatics and Geosciences, 2(1), 311–335.Google Scholar
  39. 39.
    Nag, S. K., & Chakraborty, S. (2003). Influence of rock types and structures in the development of Drainage network in the hard rock area. Journal of the Indian Society of Remote Sensing, 31(1), 25–35.Google Scholar
  40. 40.
    Pallard, B., Castellarin, A., & Montanari, A. (2009). A look at the links between drainage density and flood statistics. Hydrology and Earth System Sciences, 13, 1019–1020.Google Scholar
  41. 41.
    Singh, S., & Singh, M. C. (1997). Morphometric analysis of Kanhar River basin. National Geographical Journal of India, 43(1), 31–43.Google Scholar
  42. 42.
    Manu, M. S., & Anirudhan, S. (2008). Drainage characteristics of Achankovil River basin, Kerala. Journal of Geological Society of India, 71, 841–850.Google Scholar
  43. 43.
    Sreedevi, P. P., Owais, S., Khan, H. H., & Ahamed, S. (2009). Morphometric analysis of a water shed of south India using SRTM data and GIS. Journal of Geological Society of India, 73, 543–553.Google Scholar
  44. 44.
    Schumm, S. A. (1963). Sinuosity of alluvial rivers in the Great Plains. Geological Society of America Bulletin, 74(9), 1089–1100.Google Scholar
  45. 45.
    Pranjit, K. S., Kalyanjit, S., Prem, K. C., & Ankita, S. (2013). Geospatial study on morphometric characterization of Umtrew River basin of Meghalaya, India. International Journal of Water Resources and Environmental Engineering, 5(8), 489–498.Google Scholar
  46. 46.
    Sreedevi, P. D., Sreekanth, P. D., Khan, H. H., Ahmed, S. (2013). Drainage morphometry and its influence on hydrology in a semi-arid region: using SRTM data and GIS. Environmental Earth Sciences, 70(2), 839–848.Google Scholar
  47. 47.
    Nyle, C. B., & Weil, R. (1999). Nature and properties of soil (12th ed.). Upper Saddle River: Prentice Hall.Google Scholar
  48. 48.
    Awachie, J. B. E., & Walson, E. C. (1976). Fish culture possibilities on the floodplain of the Niger-Benue drainage system (pp. 225–282). CIFA technical paper.Google Scholar
  49. 49.
    Uma, K. O., & Onuoha, M. (1997). Hydrodynamic flow and formation pressure in the Anambra drainage basin, Southern Nigeria. Hdrological Sciences Journal, 42(2), 141–154.Google Scholar
  50. 50.
    Balek, J. (1983). Development in water science: Hydrology and water resources in tropical regions (p. 271). Amsterdam: Elsevier.Google Scholar
  51. 51.
    Beven, K. J. (1997). Distributional hydrological modeling: Application of the top-model concept. London: Wiley.Google Scholar

Copyright information

© Korean Spatial Information Society 2019

Authors and Affiliations

  • Chinero Nneka Ayogu
    • 1
    Email author
  • Philip Ogbonna Phil-Eze
    • 1
  • Nnadozie Onyekachi Ayogu
    • 2
  • Rapheal Iweanya Maduka
    • 2
  1. 1.Department of Geography, Faculty of Social SciencesUniversity of NigeriaNsukkaNigeria
  2. 2.Department of Geology, Faculty of Physical SciencesUniversity of NigeriaNsukkaNigeria

Personalised recommendations