Advertisement

Banana suitability and Fusarium wilt distribution in the Philippines under climate change

  • Arnold R. SalvacionEmail author
  • Christian Joseph R. Cumagun
  • Ireneo B. Pangga
  • Damasa B. Magcale-Macandog
  • Pompe C. Sta. Cruz
  • Ronaldo B. Saludes
  • Tamie C. Solpot
  • Edna A. Aguilar
Article
  • 11 Downloads
Part of the following topical collections:
  1. Academia and Industry collaboration on the Spatial Information
  2. Academia and Industry collaboration on the Spatial Information

Abstract

Climate change is expected to affect crop production directly and indirectly due to changes in crop suitability, decrease in productivity, and higher incidence of pest and diseases. In the case of banana, change in suitability and distribution of Fusarium wilt due to climate change can pose a major threat on its production system. Being a major dollar earner for the Philippines, these threats can greatly affect the country’s economic and food production system. This study assessed banana suitability and the potential distribution of Fusarium wilt in the Philippines under current and future climate condition using fuzzy logic and maximum entropy approach. Based on the results, climate change might have limited impact on banana suitability in the country. But the projected changes in rainfall in the future can increase the areas that are favorable for Fusarium wilt occurrence. From 21% under baseline climate condition, favorable areas for Fusarium wilt in the Philippines is estimated to increase to 27% covering 91.2% and 28.5% of the country’s highly and moderately suitable areas for banana, respectively. Such coverage accounts for approximately 67% of the country’s total harvested area for banana.

Keywords

Banana suitability Fusarium wilt distribution Climate change Philippines 

Notes

Acknowledgements

The corresponding author would like to thank the Department of Science and Technology, Accelerated Science and Technology Human Resource Development Program-National Science Consortium-University of the Philippines Los Baños (DOST ASTHRDP-NSC-UPLB) for the financial support for his Doctoral study.

Compliance with ethical standards

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

References

  1. 1.
    Salvacion, A. R. (2017). Mapping spatio-temporal changes in climatic suitability of corn in the Philippines under future climate condition. Quaestiones Geographicae, 36(1), 105–120.  https://doi.org/10.1515/quageo-2017-0008.CrossRefGoogle Scholar
  2. 2.
    Salvacion, A. R., Pangga, I. B., & Cumagun, C. J. R. (2015). Assessment of mycotoxin risk on corn in the Philippines under current and future climate change conditions. Reviews on Environmental Health, 30(3), 135–142.  https://doi.org/10.1515/reveh-2015-0019.CrossRefGoogle Scholar
  3. 3.
    Salvacion, A. R., & Martin, A. A. (2016). Climate change impact on corn suitability in Isabela province, Philippines. Journal of Crop Science and Biotechnology, 19(3), 223–229.  https://doi.org/10.1007/s12892-016-0019-2.CrossRefGoogle Scholar
  4. 4.
    Salvacion, A. R. (2015). Climatic change impact on corn productivity in the Philippines. International Journal of Sciences: Basic and Applied Research (IJSBAR), 23(1), 54–68.Google Scholar
  5. 5.
    Pangga, I. B., Salvacion, A. R., & Cumagun, C. J. R. (2015). Climate change and plant diseases caused by mycotoxigenic fungi: Implications for food security. In L. M. Botana & M. J. Sainz (Eds.), Climate change and mycotoxins (pp. 1–28). Retrieved from www.degruyter.com/view/books/9783110333619/9783110333619-003/9783110333619-003.xml.
  6. 6.
    Solpot, T. C., Pangga, I. B., Baconguis, R. D. T., & Cumagun, C. J. R. (2016). Occurrence of Fusarium oxysporum f. sp. cubense tropical race 4 and other genotypes in Banana in South-Central Mindanao, Philippines. Philippine Agricultural Scientist, 99(4), 370–378.Google Scholar
  7. 7.
    PSA. (2017). CountrySTAT Philippines. Other crops; area planted or harvested. Retrieved May 13, 2017, from http://countrystat.psa.gov.ph/.
  8. 8.
    Cook, D. C., Taylor, A. S., Meldrum, R. A., & Drenth, A. (2015). Potential economic impact of Panama disease (tropical race 4) on the Australian Banana Industry. Journal of Plant Diseases and Protection, 122(5–6), 229–237.  https://doi.org/10.1007/BF03356557.CrossRefGoogle Scholar
  9. 9.
    Ghag, S. B., Shekhawat, U. K. S., & Ganapathi, T. R. (2015). Fusarium wilt of banana: Biology, epidemiology and management. International Journal of Pest Management, 61(3), 250–263.  https://doi.org/10.1080/09670874.2015.1043972.CrossRefGoogle Scholar
  10. 10.
    Li, C., Chen, S., Zuo, C., Sun, Q., Ye, Q., Yi, G., et al. (2011). The use of GFP-transformed isolates to study infection of banana with Fusarium oxysporum f. sp. cubense race 4. European Journal of Plant Pathology, 131(2), 327–340.  https://doi.org/10.1007/s10658-011-9811-5.CrossRefGoogle Scholar
  11. 11.
    Pattison, A. B., Wright, C. L., Kukulies, T. L., & Molina, A. B. (2014). Ground cover management alters development of Fusarium wilt symptoms in Ducasse bananas. Australasian Plant Pathology, 43(4), 465–476.  https://doi.org/10.1007/s13313-014-0296-5.CrossRefGoogle Scholar
  12. 12.
    Ploetz, R. C. (2015). Fusarium wilt of banana. Phytopathology, 105(12), 1512–1521.  https://doi.org/10.1094/PHYTO-04-15-0101-RVW.CrossRefGoogle Scholar
  13. 13.
    Ploetz, R. C. (2015). Management of Fusarium wilt of banana: A review with special reference to tropical race 4. Crop Protection, 73, 7–15.  https://doi.org/10.1016/j.cropro.2015.01.007.CrossRefGoogle Scholar
  14. 14.
    Ploetz, R. C. (2006). Fusarium wilt of banana is caused by several pathogens referred to as Fusarium oxysporum f. sp. cubense. Phytopathology, 96(6), 653–656.  https://doi.org/10.1094/phyto-96-0653.CrossRefGoogle Scholar
  15. 15.
    Fu, L., Ruan, Y., Tao, C., Li, R., & Shen, Q. (2016). Continous application of bioorganic fertilizer induced resilient culturable bacteria community associated with banana Fusarium wilt suppression. Scientific Reports, 6, 27731.CrossRefGoogle Scholar
  16. 16.
    Mostert, D., Molina, A. B., Daniells, J., Fourie, G., Hermanto, C., Chao, C.-P., et al. (2017). The distribution and host range of the banana Fusarium wilt fungus, Fusarium oxysporum f. sp. cubense, in Asia. PLoS ONE, 12(7), e0181630.  https://doi.org/10.1371/journal.pone.0181630.CrossRefGoogle Scholar
  17. 17.
    Balezentiene, L., Streimikiene, D., & Balezentis, T. (2013). Fuzzy decision support methodology for sustainable energy crop selection. Renewable and Sustainable Energy Reviews, 17, 83–93.  https://doi.org/10.1016/j.rser.2012.09.016.CrossRefGoogle Scholar
  18. 18.
    Joss, B. N., Hall, R. J., Sidders, D. M., & Keddy, T. J. (2008). Fuzzy-logic modeling of land suitability for hybrid poplar across the Prairie Provinces of Canada. Environmental Monitoring and Assessment, 141(1–3), 79–96.  https://doi.org/10.1007/s10661-007-9880-2.CrossRefGoogle Scholar
  19. 19.
    Salvacion, A. R. (2017). Fuzzy logic approach to explore climatic limitation on corn production in the Philippines. Spatial Information Research, 25(3), 421–429.  https://doi.org/10.1007/s41324-017-0109-3.CrossRefGoogle Scholar
  20. 20.
    Chen, Y., & Paydar, Z. (2012). Evaluation of potential irrigation expansion using a spatial fuzzy multi-criteria decision framework. Environmental Modelling and Software, 38, 147–157.  https://doi.org/10.1016/j.envsoft.2012.05.010.CrossRefGoogle Scholar
  21. 21.
    Dubey, S., Pandey, R. K., & Gautam, S. S. (2013). Literature treview on fuzzy expert system in agriculture. International Journal of Soft Computing and Engineering, 2(6), 289–291.Google Scholar
  22. 22.
    Kim, K. S., & Beresford, R. M. (2011). Use of a climatic rule and fuzzy sets to model geographic distribution of climatic risk for European canker (Neonectria galligena) of apple. Phytopathology, 102(2), 147–157.  https://doi.org/10.1094/PHYTO-01-11-0018.CrossRefGoogle Scholar
  23. 23.
    Bosso, L., Russo, D., Di Febbraro, M., Cristinzio, G., & Zoina, A. (2016). Potential distribution of Xylella fastidiosa in Italy: A maximum entropy model. Phytopathologia Mediterranea, 55(1). Retrieved from http://www.fupress.net/index.php/pm/article/view/16429.
  24. 24.
    Galdino, T. V. S., Kumar, S., Oliveira, L. S. S., Alfenas, A. C., Neven, L. G., Al-Sadi, A. M., et al. (2016). Mapping global potential risk of mango sudden decline disease caused by Ceratocystis fimbriata. PLoS ONE, 11(7), e0159450.  https://doi.org/10.1371/journal.pone.0159450.CrossRefGoogle Scholar
  25. 25.
    Narouei-Khandan, H. A., Halbert, S. E., Worner, S. P., & van Bruggen, A. H. C. (2016). Global climate suitability of citrus huanglongbing and its vector, the Asian citrus psyllid, using two correlative species distribution modeling approaches, with emphasis on the USA. European Journal of Plant Pathology, 144(3), 655–670.  https://doi.org/10.1007/s10658-015-0804-7.CrossRefGoogle Scholar
  26. 26.
    Shimwela, M. M., Blackburn, J. K., Jones, J. B., Nkuba, J., Narouei-Khandan, H. A., Ploetz, R. C., et al. (2016). Local and regional spread of banana xanthomonas wilt (BXW) in space and time in Kagera, Tanzania. Plant Pathology.  https://doi.org/10.1111/ppa.12637.Google Scholar
  27. 27.
    Phillips, S. J., Anderson, R. P., & Schapire, R. E. (2006). Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190(3–4), 231–259.  https://doi.org/10.1016/j.ecolmodel.2005.03.026.CrossRefGoogle Scholar
  28. 28.
    Wisz, M. S., Hijmans, R. J., Li, J., Peterson, A. T., Graham, C. H., Guisan, A., et al. (2008). Effects of sample size on the performance of species distribution models. Diversity and Distributions, 14(5), 763–773.  https://doi.org/10.1111/j.1472-4642.2008.00482.x.CrossRefGoogle Scholar
  29. 29.
    Salvacion, A. R., Solpot, T. C., Cumagun, C. J. R., Pangga, I. B., Macandog, D. M., Sta. Cruz, P. C., et al. (2019). Exploring determinants of Fusarium wilt occurence on banana in South Central Mindanao, Philippines. Manuscript submitted for publication.Google Scholar
  30. 30.
    Salvacion, A. R., Magcale-Macandog, D. B., Cruz, P. C. S., Saludes, R. B., Pangga, I. B., & Cumagun, C. J. R. (2018). Evaluation and spatial downscaling of CRU TS precipitation data in the Philippines. Modeling Earth Systems and Environment, 4(3), 891–898.  https://doi.org/10.1007/s40808-018-0477-2.CrossRefGoogle Scholar
  31. 31.
    Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., & Jarvis, A. (2005). Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25(15), 1965–1978.  https://doi.org/10.1002/joc.1276.CrossRefGoogle Scholar
  32. 32.
    Baek, H.-J., Lee, J., Lee, H.-S., Hyun, Y.-K., Cho, C., Kwon, W.-T., et al. (2013). Climate change in the 21st century simulated by HadGEM2-AO under representative concentration pathways. Asia-Pacific Journal of Atmospheric Sciences, 49(5), 603–618.  https://doi.org/10.1007/s13143-013-0053-7.CrossRefGoogle Scholar
  33. 33.
    Riahi, K., Rao, S., Krey, V., Cho, C., Chirkov, V., Fischer, G., et al. (2011). RCP 8.5—A scenario of comparatively high greenhouse gas emissions. Climatic Change, 109(1–2), 33–57.  https://doi.org/10.1007/s10584-011-0149-y.CrossRefGoogle Scholar
  34. 34.
    Farr, T. G., Rosen, P. A., Caro, E., Crippen, R., Duren, R., Hensley, S., et al. (2007). The shuttle radar topography mission. Reviews of Geophysics.  https://doi.org/10.1029/2005rg000183.Google Scholar
  35. 35.
    Ihaka, R., & Gentleman, R. (1996). R: A language for data analysis and graphics. Journal of Computational and Graphical Statistics, 5(3), 299–314.  https://doi.org/10.1080/10618600.1996.10474713.Google Scholar
  36. 36.
    R Core Team. (2014). R: A language and environment for statistical computing. R Foundation for Statistical Computing. Retrieved January 5, 2018 from http://www.R-project.org/
  37. 37.
    Hijmans, R. J. (2014). raster: Geographic data analysis and modeling. R package version 2.3-12. Retrieved January 5, 2018 from http://CRAN.R-project.org/package=raster.
  38. 38.
    Hengl, T., de Jesus, J. M., Heuvelink, G. B. M., Gonzalez, M. R., Kilibarda, M., Blagotić, A., et al. (2017). SoilGrids250 m: Global gridded soil information based on machine learning. PLoS ONE, 12(2), e0169748.  https://doi.org/10.1371/journal.pone.0169748.CrossRefGoogle Scholar
  39. 39.
    Hengl, T., de Jesus, J. M., MacMillan, R. A., Batjes, N. H., Heuvelink, G. B. M., Ribeiro, E., et al. (2014). SoilGrids1 km—Global soil information based on automated mapping. PLoS ONE, 9(8), e105992.  https://doi.org/10.1371/journal.pone.0105992.CrossRefGoogle Scholar
  40. 40.
    Jarvis, A., Ramirez-Villegas, J., Herrera Campo, B. V., & Navarro-Racines, C. (2012). Is cassava the answer to african climate change adaptation? Tropical Plant Biology, 5(1), 9–29.  https://doi.org/10.1007/s12042-012-9096-7.CrossRefGoogle Scholar
  41. 41.
    Robinson, J. C., & Saúco, V. G. (2010). Bananas and plantains (2nd ed.). Wallingford: CABI Publishing.CrossRefGoogle Scholar
  42. 42.
    Sys, C., Van Ranst, E., Debaveye, J., & Beernaert, F. (1993). Land evaluation: Part III—Crop requirments. Brussels: Agricultural Publications.Google Scholar
  43. 43.
    Ramirez, J., Jarvis, A., Van den Bergh, I., Staver, C., & Turner, D. (2011). Changing climates: Effects on growing conditions for banana and plantain (Musa spp.) and possible responses. In S. S. Yadav, R. Redden, H. Lotze-Campen, & A. Hall (Eds.), Crop adaptation to climate change (pp. 426–438). Oxford: Wiley-Blackwell.  https://doi.org/10.1002/9780470960929.ch29.CrossRefGoogle Scholar
  44. 44.
    Ranjitkar, S., Sujakhu, N. M., Merz, J., Kindt, R., Xu, J., Matin, M. A., et al. (2016). Suitability analysis and projected climate change impact on banana and coffee production zones in Nepal. PLoS ONE, 11(9), e0163916.  https://doi.org/10.1371/journal.pone.0163916.CrossRefGoogle Scholar
  45. 45.
    Dong, X., Ling, N., Wang, M., Shen, Q., & Guo, S. (2012). Fusaric acid is a crucial factor in the disturbance of leaf water imbalance in Fusarium-infected banana plants. Plant Physiology and Biochemistry, 60, 171–179.  https://doi.org/10.1016/j.plaphy.2012.08.004.CrossRefGoogle Scholar
  46. 46.
    Ghaemi, A., Rahimi, A., & Banihashemi, Z. (2011). Effects of water stress and Fusarium oxysporum f. sp. lycoperseci on growth (leaf area, plant height, shoot dry matter) and shoot nitrogen content of tomatoes under greenhouse conditions. Iran Agricultural Research, 29(2), 51–62.  https://doi.org/10.22099/iar.2011.136.Google Scholar
  47. 47.
    Lee, Y. H., Cha, K. H., Lee, D. G., Shim, H. K., Ko, S. J., Park, I. J., et al. (2004). Cultural and rainfall factors involved in disease development of Fusarium wilt of sweet potato. Plant Pathology Journal, 20(2), 92–96.CrossRefGoogle Scholar
  48. 48.
    Perez-Vicente, L., Dita, M. A., & Martínez-de la Parte, E. (2014). Technical Manual Prevention and diagnostic of Fusarium Wilt (Panama disease) of banana caused by Fusarium oxysporum f. sp. cubense Tropical Race 4 (TR4). Retrieved January 5, 2018 from http://www.fao.org/3/a-br126e.pdf.
  49. 49.
    Shabani, F., Kumar, L., & Esmaeili, A. (2014). Future distributions of Fusarium oxysporum f. spp. in European, Middle Eastern and North African agricultural regions under climate change. Agriculture, Ecosystems and Environment, 197, 96–105.  https://doi.org/10.1016/j.agee.2014.08.005.CrossRefGoogle Scholar
  50. 50.
    Siamak, S. B., & Zheng, S. (2018). Banana Fusarium wilt (Fusarium oxysporum f. sp. cubense) control and resistance, in the context of developing wilt-resistant bananas within sustainable production systems. Plant Journal, 4(5), 208–218.  https://doi.org/10.1016/j.hpj.2018.08.001.Google Scholar
  51. 51.
    Dita, M., Barquero, M., Heck, D., Mizubuti, E. S. G., & Staver, C. P. (2018). Fusarium wilt of banana: Current knowledge on epidemiology and research needs toward sustainable disease management. Frontiers in Plant Science, 9, 1468.  https://doi.org/10.3389/fpls.2018.01468.CrossRefGoogle Scholar
  52. 52.
    Karangwa, P., Blomme, G., Beed, F., Niyongere, C., & Viljoen, A. (2016). The distribution and incidence of banana Fusarium wilt in subsistence farming systems in east and central Africa. Crop Protection, 84, 132–140.  https://doi.org/10.1016/j.cropro.2016.03.003.CrossRefGoogle Scholar

Copyright information

© Korean Spatial Information Society 2019

Authors and Affiliations

  1. 1.Department of Community and Environmental Resource Planning, College of Human EcologyUniversity of the Philippines Los BañosLos BañosPhilippines
  2. 2.Institute of Weed Science, Entomology and Plant Pathology, College of Agriculture and Food ScienceUniversity of the Philippines Los BañosLos BañosPhilippines
  3. 3.Institute of Biological Sciences, College of Arts and SciencesUniversity of the Philippines Los BañosLos BañosPhilippines
  4. 4.Institute of Crop Science, College of Agriculture and Food ScienceUniversity of the Philippines Los BañosLos BañosPhilippines
  5. 5.Agrometeorology and Farm Structures Division, Institute of Agricultural Engineering, College of Engineering and Agro-Industrial TechnologyUniversity of the Philippines Los BañosLos BañosPhilippines
  6. 6.School of Environmental Science and ManagementUniversity of the Philippines Los BañosLos BañosPhilippines
  7. 7.College of AgricultureUniversity of Southern MindanaoKabacanPhilippines

Personalised recommendations