Advertisement

Spatial Information Research

, Volume 27, Issue 1, pp 37–48 | Cite as

Modeling urban dynamics along two major industrial corridors in India

  • T. V. RamachandraEmail author
  • Jefferey M. Sellers
  • H. A. Bharath
  • S. Vinay
Article
  • 26 Downloads
Part of the following topical collections:
  1. Academia and Industry collaboration on the Spatial Information

Abstract

Rapid urban growth and consequent sprawl have been a major concern in urban planning towards the provision of basic amenities and infrastructure. The current research was undertaken as per the recommendations of brainstorming session involving stakeholders from academia, government agencies and industry. The outcome of this study is expected to provide the vital inputs to the federal government to provision basic amenities and smart infrastructure, to boost the industrial growth, while maintaining the local ecology and environment and support local livelihood. Spatial patterns of land use dynamics have been analysed in two major corridors (with 10 km buffer on either side). During the past two decades, the urban growth is about 441% along Mumbai–Pune Industrial corridor and 276% along Chennai–Bangalore–Mangalore corridor. The prediction of likely growth has been done using Markov-cellular automation model, accounting fuzzy behavior of agents. Spatial metrics confirm that the core urban areas of major cities have concentrated growth and sprawl at the outskirts. Prediction model estimates that urban area would increase to 47.1% by 2027 in Mumbai–Pune corridor and to 35.4% in 2029 in Chennai–Mangalore corridor. This study aids in pre-visualising the urban growth to evolve appropriate management strategies to mitigate environmental impacts.

Keywords

Cellular automata Chennai–Bangalore Fuzzy Markov chains Mumbai–Pune 

Notes

Acknowledgements

We are grateful to (1) APN Network for climate change [ARCP2012-FP03-Sellers] for the financial support to carryout research—Mega Regional Development and Environmental change in India and China, (2) the NRDMS Division, The Ministry of Science and Technology, Government of India; (3) Indian Institute of Science and (4) Indian Institute of Technology, Kharagpur for the infrastructure support. We thank (1) United States Geological Survey and (2) National Remote Sensing Centre (NRSC-Hyderabad) for providing temporal remote sensing data. Ms. Revathi N. and Brigit M. Baby worked as interns in this research as part of their respective master’s dissertation work and took part in data mining and spatial data analyses. We thank the participants of stakeholder meeting. And this research was undertaken as per the recommendations of stakeholder interaction meeting involving academia, government agencies and industry.

References

  1. 1.
    Wang, H., He, S., Liu, X., Dai, L., Pan, P., Hong, S., et al. (2013). Simulating urban expansion using a cloud-based cellular automata model: A case study of Jiangxia, Wuhan, China. Landscape and Urban Planning, 110(1), 99–112.  https://doi.org/10.1016/j.landurbplan.2012.10.016.CrossRefGoogle Scholar
  2. 2.
    Hu, S., Tong, L., Frazier, A. E., & Liu, Y. (2015). Urban boundary extraction and sprawl analysis using Landsat images: A case study in Wuhan, China. Habitat for International, 47, 183–195.  https://doi.org/10.1016/j.habitatint.2015.01.017.CrossRefGoogle Scholar
  3. 3.
    United Nations. (2014). World urbanization prospects: The 2014 revision, highlights. Department of Economic and Social Affairs, Population Division. Retrieved from https://esa.un.org/unpd/wup/publications/files/wup2014-highlights.pdf.
  4. 4.
    Office of the Registrar General and Census Commissioner. (2011). Census of India. Ministry of Home Affairs, Government of India. Retrieved February 7, 2017 from http://www.censusindia.gov.in.
  5. 5.
    Planning Comission. (2012). The challenges of urbanization in India. Retrieved from http://12thplan.gov.in/12fyp_docs/17.pdf.
  6. 6.
    Vickerman, R. (2007). Gateways, corridor and compitativeness: An evolution of trans-european networks and lessons for Canada. In International conference on gateways and corridors. Vancouver. Retrieved from http://www.gateway-corridor.com/roundconfpapers/documents/Vickerman_Roger_Vancouver.pdf.
  7. 7.
    Govenment of India. (2014). Make in India. Retrieved January 13, 2018 from http://www.makeinindia.com.
  8. 8.
    De, P., & Iyengar, K. (2014). Developing economic corridors in South Asia. Mandaluyong City, Philippines: Asia Development Bank. Retrieved from https://www.adb.org/sites/default/files/publication/162073/developing-economic-corridors.pdf.
  9. 9.
    Centre for Urban Research. (2015). Delhi Mumbai Industrial corridor. Retrieved January 5, 2018 from https://delhimumbaiindustrialcorridor.com/characteristics-of-industrial-corridor.html.
  10. 10.
    Banerjee, P. (2017). Development of east coast economic corridor and Vizag: Chennai industrial corridor. Mandaluyong City, Philippines.  https://doi.org/10.22617/wps178645-2.
  11. 11.
    Ministry of Commerce and Industry, and Government of India. (2017). National Industrial Corridor Development and Implementation Trust. Press Information Bureau. Retrieved January 15, 2018 from http://pib.nic.in/newsite/PrintRelease.aspx?relid=159250.
  12. 12.
    Bhatta, B., Saraswati, S., & Bandyopadhyay, D. (2010). Urban sprawl measurement from remote sensing data. Applied Geography, 30(4), 731–740.  https://doi.org/10.1016/j.apgeog.2010.02.002.CrossRefGoogle Scholar
  13. 13.
    Ramachandra, T. V., Bharath, H. A., Vinay, S., Joshi, N. V, Kumar, U., & Venugopal Rao, K. (2016). Modelling and visualization of urban trajectory in 4 cities of India. In 32nd annual in-house symposium on space science and technology ISRO-IISc space technology cell. Retrieved from http://wgbis.ces.iisc.ernet.in/energy/water/paper/Modelling-and-Visualization/index.html.
  14. 14.
    Ji, C. Y., Liu, Q., Sun, D., Wang, S., Lin, P., & Li, X. (2001). Monitoring urban expansion with remote sensing in China. International Journal of Remote Sensing, 22(8), 1441–1455.  https://doi.org/10.1080/01431160117207.CrossRefGoogle Scholar
  15. 15.
    NASA. (2001). Satellite maps provide better urban sprawl insight. NASA, News Release 2. Retrieved January 23, 2018 from https://www.nasa.gov/audience/formedia/archives/MP_Archive_01.html.
  16. 16.
    Chang, K. T. (2015). Introduction to geographic information system (8th ed.). New York: McGraw Hill Education.Google Scholar
  17. 17.
    Islam, W., & Sarker, S. C. (2016). Monitoring the changing pattern of land use in the Rangpur City corporation using remote sensing and GIS. Journal of Geographic Information System, 08(04), 537–545.  https://doi.org/10.4236/jgis.2016.84045.CrossRefGoogle Scholar
  18. 18.
    Jasim, M. A., Shafri, H. Z. M., Hamedianfar, A., & Sameen, M. I. (2016). Land transformation assessment using the integration of remote sensing and GIS techniques: A case study of Al-Anbar Province, Iraq. Arabian Journal of Geosciences.  https://doi.org/10.1007/s12517-016-2697-y.Google Scholar
  19. 19.
    Batty, M. (2009). Urban modeling. International Encyclopedia of Human Geography.  https://doi.org/10.1016/b978-008044910-4.01092-0.Google Scholar
  20. 20.
    Santé, I., García, A. M., Miranda, D., & Crecente, R. (2010). Cellular automata models for the simulation of real-world urban processes: A review and analysis. Landscape and Urban Planning, 96(2), 108–122.  https://doi.org/10.1016/j.landurbplan.2010.03.001.CrossRefGoogle Scholar
  21. 21.
    Crooks, A. T. (2010). Constructing and implementing an agent-based model of residential segregation through vector GIS. International Journal of Geographical Information Science, 24(5), 661–675.  https://doi.org/10.1080/13658810903569572.CrossRefGoogle Scholar
  22. 22.
    Guidolin, M., Chen, A. S., Ghimire, B., Keedwell, E. C., Djordjević, S., & Savić, D. A. (2016). A weighted cellular automata 2D inundation model for rapid flood analysis. Environmental Modelling and Software, 84, 378–394.  https://doi.org/10.1016/j.envsoft.2016.07.008.CrossRefGoogle Scholar
  23. 23.
    Johnston, K. M., North, M. J., & Brown, D. G. (Eds.). (2013). Introducing agent based modeling in the GIS environment. California: ESRI Press.Google Scholar
  24. 24.
    Jokar Arsanjani, J., Helbich, M., Kainz, W., Darvishi Boloorani, A., Arsanjani, J. J., Helbich, M., et al. (2012). Integration of logistic regression, Markov chain and cellular automata models to simulate urban expansion. International Journal of Applied Earth Observation and Geoinformation, 21(1), 265–275.  https://doi.org/10.1016/j.jag.2011.12.014.Google Scholar
  25. 25.
    Taubenböck, H., Esch, T., Felbier, A., Wiesner, M., Roth, A., & Dech, S. (2012). Monitoring urbanization in mega cities from space. Remote Sensing of Environment, 117, 162–176.  https://doi.org/10.1016/j.rse.2011.09.015.CrossRefGoogle Scholar
  26. 26.
    Matthews, K. B., Craw, S., & Sibbald, A. R. (1999). Implementation of a spatial decision support system for rural land use planning. Integrating Geographic Information System and Environmental Models with Search and Optimisation Algorithms, Computers.  https://doi.org/10.1016/s0168-1699(99)00005-8.Google Scholar
  27. 27.
    Bharath, H. A., Vinay, S., Venugopal Rao, K., & Ramachandra, T. V. (2015). Prediction of spatial patterns of urban dynamics in Pune, India. In 11th IEEE India conference: Emerging trends and innovation in technology, INDICON 2014.  https://doi.org/10.1109/indicon.2014.7030404.
  28. 28.
    Chen, L. (2012). Agent-based modeling in urban and architectural research: A brief literature review. Frontiers of Architectural Research, 10, 10.  https://doi.org/10.1016/j.foar.2012.03.003.Google Scholar
  29. 29.
    Zadeh, L. A. (1975). The concept of a linguistic variable and its application to approximate reasoning-I. Information Sciences, 8(3), 199–249.  https://doi.org/10.1016/0020-0255(75)90036-5.CrossRefGoogle Scholar
  30. 30.
    Zimmermann, H. J. (2010). Fuzzy set theory. Wiley Interdisciplinary Reviews: Computational Statistics.  https://doi.org/10.1002/wics.82.Google Scholar
  31. 31.
    Arsovski, S., Todorovic, G., Lazić, Z., Arsovski, Z., Ljepava, N., & Aleksic, A. (2017). Model for selection of the best location based on fuzzy AHP and Hurwitz methods. Mathematical Problems in Engineering, 2017, 1–12.  https://doi.org/10.1155/2017/2803461.CrossRefGoogle Scholar
  32. 32.
    Saaty, T. L. (2004). Decision making: The analytic hierarchy and network processes (AHP/ANP). Journal of Systems Science and Systems Engineering, 13(1), 1–35.  https://doi.org/10.1007/s11518-006-0151-5.CrossRefGoogle Scholar
  33. 33.
    Bharath, H. A., Chandan, M. C., Vinay, S., & Ramachandra, T. V. (2017). Modelling urban dynamics in rapidly urbanising Indian cities. Egyptian Journal of Remote Sensing and Space Science.  https://doi.org/10.1016/j.ejrs.2017.08.002.Google Scholar
  34. 34.
    United States Geological Survey. (2015). Earthexplorer. United States geological survey. Retrieved December 23, 2015 from https://earthexplorer.usgs.gov.
  35. 35.
    Geological Survey of India. (n.d.). Topographical maps. Government of India. Retrieved November 9, 2016 from www.portal.gsi.gov.in.
  36. 36.
    Google. (2016). Google earth. Retrieved from https://www.google.com/intl/en_in/earth/.
  37. 37.
    National Remote Sensing Centre. (2016). Bhuvan. Indian Space Research Organisation, Government of India. Retrieved from http://bhuvan.nrsc.gov.in/.
  38. 38.
    Jensen, J. R. (1996). Introductory digital image processing: A remote sensing perspective (2nd ed.). London: Pearson.  https://doi.org/10.2113/gseegeosci.13.1.89.Google Scholar
  39. 39.
    Congalton, R. G., & Green, K. (2009). Assessing the accuracy of remotely sensed data: Principles and practices. The photogrammetric record (Vol. 2). Boca Raton: CRC Press.  https://doi.org/10.1111/j.1477-9730.2010.00574_2.x.Google Scholar
  40. 40.
    Saaty, T. L. (2011). Fundamentals of decision making and priority theory with the analytic hierarchy process (3rd ed., Vol. 6). Pittsburgh: RWS Publications.Google Scholar
  41. 41.
    Chang, D.-Y. (1996). Applications of the extent analysis method on fuzzy AHP. European Journal of Operational Research, 95(3), 649–655.  https://doi.org/10.1016/0377-2217(95)00300-2.CrossRefGoogle Scholar
  42. 42.
    Lillesand, T. M., Kiefer, R. W., & Chipman, J. W. (2004). Remote sensing and image interpretation. Lloydia Cincinnati (Vol. 3). Retrieved from http://www.osti.gov/energycitations/product.biblio.jsp?osti_id=6028047.

Copyright information

© Korean Spatial Information Society 2018

Authors and Affiliations

  1. 1.Energy and Wetland Research Group, CES TE 15, Centre for Ecological Sciences, New Bioscience Building, Third Floor, E-Wing [Near D-Gate]Indian Institute of ScienceBangaloreIndia
  2. 2.Department of Political AffairsUniversity of Southern California (USC)Los AngelesUSA
  3. 3.Ranbir and Chitra Gupta School of Infrastructure Design and Management (RCGSIDM)Indian Institute of Technology KharagpurKharagpurIndia

Personalised recommendations