Spatial Information Research

, Volume 27, Issue 1, pp 63–74 | Cite as

Evaluating the performance of map matching algorithms for navigation systems: an empirical study

  • Jaiteg SinghEmail author
  • Saravjeet Singh
  • Sukhjit Singh
  • Hardeep Singh


Navigation systems are extensively used for location identification and route finding. The efficiency of navigation systems is highly affected by map matching algorithms. This paper provides a review of major map matching algorithms. The performance of reviewed algorithms was further evaluated with the help of an empirical study. A dataset of forty seven kilometers was collected to deploy various map matching algorithms so as to measure their performance. A comparison of geometric, topological and Kalman filter based map matching algorithms was performed on the same dataset. It was concluded that performance of Kalman filter algorithm provide better results in comparison to geometrical and topological algorithms.


GPS Geometric Topological Kalman filter Road network 


  1. 1.
    Scott, C. A., & Drane, C. (1994). Increased accuracy of motor vehicle position estimation by utilising map data: vehicle dynamics, and other information sources. In Proceedings of the vehicle navigation and information systems conference, 1994 (pp. 585–590). IEEE.Google Scholar
  2. 2.
    Zhao, Y. (1997). Vehicle location and navigation systems. The Artech House ITS series (2010th ed.). Boston: Artech House.
  3. 3.
    Mohammed Quddus, S. W. (2015). Shortest path and vehicle trajectory aided map-matching for low frequency GPS data. Transportation Research Part C: Emerging Technologies, 55, 328. Scholar
  4. 4.
    Naumann, S., & Kovalyov, M. Y. (2017). Pedestrian route search based on open-streetmap. In Intelligent transport systems and travel behaviour (pp. 87–96). Springer.Google Scholar
  5. 5.
    Quddus, M. A., Ochieng, W. Y., Zhao, L., & Noland, R. B. (2003). A general map matching algorithm for transport telematics applications. GPS Solutions, 7(3), 157–167.CrossRefGoogle Scholar
  6. 6.
    Ochieng, W. Y., Quddus, M. A., & Noland, R. B. (2003). Map-matching in complex urban road networks. Brazilian Journal of Cartography, 55(2), 1. Scholar
  7. 7.
    Syed, S., & Cannon, M. E. (2004). Fuzzy logic-based map matching algorithm for vehicle navigation system in urban canyons. In ION national technical meeting, San Diego, CA (Vol. 1, pp. 26–28).Google Scholar
  8. 8.
    Pereira, F. C., Costa, H., & Pereira, N. M. (2009). An off-line map-matching algorithm for incomplete map databases. European Transport Research Review, 1(3), 107–124.CrossRefGoogle Scholar
  9. 9.
    Kim, W., Jee, G. I., & Lee, J. (2000). Efficient use of digital road map in various positioning for its. In Position location and navigation symposium, IEEE 2000 (pp. 170–176). IEEE.Google Scholar
  10. 10.
    Bernstein, D., & Kornhauser, A. (1998). An introduction to map matching for personal navigation assistants.Google Scholar
  11. 11.
    Kim, J. (1996). Node based map matching algorithm for car navigation system. In International symposium on automotive technology & automation (29th: 1996: Florence, Italy). Global deployment of advanced transportation telematics/ITS.Google Scholar
  12. 12.
    Greenfeld, J. S. (2002). Matching gps observations to locations on a digital map. In Transportation research board 81st annual meeting.Google Scholar
  13. 13.
    Bouju, A., Stockus, A., Bertrand, F., & Boursier, P. (2002). Location-based spatial data management in navigation systems. In Intelligent vehicle symposium, 2002. IEEE (Vol. 1, pp. 172–177). IEEE.Google Scholar
  14. 14.
    White, C. E., Bernstein, D., & Kornhauser, A. L. (2000). Some map matching algorithms for personal navigation assistants. Transportation Research Part C: Emerging Technologies, 8(1), 91–108.CrossRefGoogle Scholar
  15. 15.
    Blazquez, C., & Vonderohe, A. (2005). Simple map-matching algorithm applied to intelligent winter maintenance vehicle data. Transportation Research Record: Journal of the Transportation Research Board (1935), 68–76.Google Scholar
  16. 16.
    Krakiwsky, E. J., Harris, C. B., & Wong, R. V. (1988). A kalman filter for integrating dead reckoning, map matching and gps positioning. In Position location and navigation symposium, 1988. Record. Navigation into the 21st Century. IEEE PLANS’88, IEEE (pp. 39–46). IEEE.Google Scholar
  17. 17.
    Ebner, J. (2001). Dead reckoning and estimated positions. Performance Research, 6(3), 3.CrossRefGoogle Scholar
  18. 18.
    Jimenez, A. R., Seco, F., Prieto, C., & Guevara, J. (2009). A comparison of pedestrian dead-reckoning algorithms using a low-cost mems imu. In IEEE International symposium on intelligent signal processing, 2009. WISP 2009 (pp. 37–42). IEEE.Google Scholar
  19. 19.
    Taylor, G., Blewitt, G., Steup, D., Corbett, S., & Car, A. (2001). Road reduction filtering for GPS-GIS navigation. Transactions in GIS, 5(3), 193–207.CrossRefGoogle Scholar
  20. 20.
    Srinivasan, D., Cheu, R. L., & Tan, C. W. (2003). Development of an improved erp system using gps and ai techniques. In Proceedings of the intelligent transportation systems, 2003 (Vol. 1, pp. 554–559). IEEE.Google Scholar
  21. 21.
    Yang, D., Cai, B., & Yuan, Y. (2003). An improved map-matching algorithm used in vehicle navigation system. In Proceedings of the intelligent transportation systems, 2003 IEEE (Vol. 2, pp. 1246–1250). IEEE.Google Scholar
  22. 22.
    Zhao, L., Ochieng, W. Y., Quddus, M. A., & Noland, R. B. (2003). An extended Kalman filter algorithm for integrating GPS and low cost dead reckoning system data for vehicle performance and emissions monitoring. The Journal of Navigation, 56(2), 257–275.CrossRefGoogle Scholar
  23. 23.
    Loomis, P. V. W. (2018). Vehicle navigation by dead reckoning and GNSS-aided map-matching. US Patent App. 15/270,299.Google Scholar
  24. 24.
    Meng, Y., Chen, W., Li, Z., Chen, Y., & Chao, J. C. (2002). A simplified map-matching algorithm for in-vehicle navigation unit. Geographic Information Sciences, 8(1), 24–30.Google Scholar
  25. 25.
    Xu, A., Yang, D., Cao, F., Xiao, W., Law, C., Ling, K., & Chua, H. (2002). Prototype design and implementation for urban area in-car navigation system. In Proceedings of the the IEEE 5th international conference on intelligent transportation systems, 2002 (pp. 517–521). IEEE.Google Scholar
  26. 26.
    Fu, M., Li, J., & Wang, M. (2003). A hybrid map matching algorithm based on fuzzy comprehensive judgment. In International IEEE conference on intelligent transportation systems (pp. 613–617).Google Scholar
  27. 27.
    Velaga, N. R., Quddus, M. A., & Bristow, A. L. (2009). Developing an enhanced weight-based topological map-matching algorithm for intelligent transport systems. Transportation Research Part C: Emerging Technologies, 17(6), 672–683.CrossRefGoogle Scholar
  28. 28.
    Kim, S., & Kim, J. H. (2001). Q-factor map matching method using adaptive fuzzy network. In 1999 IEEE international conference on fuzzy systems conference proceedings, 1999. FUZZ-IEEE’99 (Vol. 2, pp. 628–633). IEEE.Google Scholar
  29. 29.
    El Najjar, M. E., & Bonnifait, P. (2005). A road-matching method for precise vehicle localization using belief theory and Kalman filtering. Autonomous Robots, 19(2), 173–191.CrossRefGoogle Scholar
  30. 30.
    Yanagisawa, H. (2010). An offline map matching via integer programming. In 2010 Proceedings of the 20th international conference on pattern recognition (ICPR) (pp. 4206–4209). IEEE.Google Scholar
  31. 31.
    Lou, Y., Zhang, C., Zheng, Y., Xie, X., Wang, W., & Huang, Y. (2009). Map matching for low-sampling-rate gps trajectories. In Proceedings of the 17th ACM SIGSPATIAL international conference on advances in geographic information systems (pp. 352–361). ACM.Google Scholar
  32. 32.
    Sakic, E. (2012). Map-matching algorithms for android applications. Bachelor thesis, Department of Electrical Engineering and Information Technology.Google Scholar
  33. 33.
    Newson, P., & Krumm, J. (2009). Hidden markov map matching through noise and sparseness. In Proceedings of the 17th ACM SIGSPATIAL international conference on advances in geographic information systems (pp. 336–343). ACM.Google Scholar
  34. 34.
    Mohamed, R., Aly, H., & Youssef, M. (2014). Accurate and efficient map matching for challenging environments. In Proceedings of the 22nd ACM SIGSPATIAL international conference on advances in geographic information systems (pp. 401–404). ACM.Google Scholar
  35. 35.
    Mansour, M. F., & Waters, D. W. (2013). Map-assisted Kalman filtering. In 2013 IEEE international conference on acoustics, speech and signal processing (ICASSP) (pp. 3208–3212). IEEE.Google Scholar
  36. 36.
    Miler, M., Todić, F., & Ševrović, M. (2016). Extracting accurate location information from a highly inaccurate traffic accident dataset: A methodology based on a string matching technique. Transportation Research Part C: Emerging Technologies, 68, 185–193.CrossRefGoogle Scholar
  37. 37.
    Li, Y., Huang, Q., Kerber, M., Zhang, L., Guibas, L. (2013). Large-scale joint map matching of gps traces. In Proceedings of the 21st ACM SIGSPATIAL international conference on advances in geographic in title suppressed due to excessive length 19 formation systems (pp. 214–223). ACM.Google Scholar
  38. 38.
    Li, L., Quddus, M., & Zhao, L. (2013). High accuracy tightly-coupled integrity monitoring algorithm for map-matching. Transportation Research Part C: Emerging Technologies, 36, 13.CrossRefGoogle Scholar
  39. 39.
    Toledo-Moreo, R., Bétaille, D., & Peyret, F. (2010). Lane-level integrity provision for navigation and map matching with GNSS, dead reckoning, and enhanced maps. IEEE Transactions on Intelligent Transportation Systems, 11(1), 100–112.CrossRefGoogle Scholar
  40. 40.
    Duckworth, D. (2012). Using Kalman filter in python for data prediction. Accessed July 18, 2018.

Copyright information

© Korean Spatial Information Society 2018

Authors and Affiliations

  • Jaiteg Singh
    • 1
    Email author
  • Saravjeet Singh
    • 2
  • Sukhjit Singh
    • 3
  • Hardeep Singh
    • 4
  1. 1.Department of Computer Applications, CUIETChitkara UniversityPunjabIndia
  2. 2.Department of Computer Science Engineering, CUIETChitkara UniversityPunjabIndia
  3. 3.Department of CSEGuru Nanak Dev Engineering CollegeLudhianaIndia
  4. 4.Department of Civil EngineeringGuru Nanak Dev Engineering CollegeLudhianaIndia

Personalised recommendations