Spatial Information Research

, Volume 24, Issue 3, pp 257–266 | Cite as

Estimation of glacial retreat and mass loss in Baspa basin, Western Himalaya

  • Vinay Kumar Gaddam
  • Anil V. Kulkarni
  • Anil Kumar Gupta


Glaciers are one of the valuable natural resources in Indian Himalaya. A large number of people depend on glacier melt for social and industrial activities. Therefore, monitoring the glacial changes becomes crucial. In the present study, retreat and mass balance of 19 glaciers in Baspa basin were analysed. An overall de-glaciation of 24 % (41.1 ± 8.37 km2) was observed between 1962 and 2014. Mass balance was estimated by Accumulation Area Ratio and Equilibrium Line Altitude (ELA) methods. The mean ELA estimate varies between 5147 ± 178 and 5405 ± 173 m. Negative mass balance was observed and the estimated mass loss is 3.6 mega tonne (3.6 × 106 m3), for a period of 9 years between 1998 and 2014. In addition, temperature and precipitation data obtained at Rackham observatory (3050 m) were analysed for a period of 29 years, between 1984 and 2013. The analysis showed an increasing trend in annual mean temperature, decreasing trend in precipitation and a higher rise in minimum temperatures of both summer and winter. Thus, the overall observations suggest continuous loss of glacier area and mass, which may influence the glacier’s health and run-off in Baspa basin.


Mass loss Retreat Baspa Rakcham 

Supplementary material

41324_2016_26_MOESM1_ESM.doc (324 kb)
Supplementary material 1 (DOC 324 kb)


  1. 1.
    Bolch, T., Kulkarni, A., Kaab, A., Huggel, C., Paul, F., Cogley, G., et al. (2012). The state and fate of Himalayan Glaciers. Science, 336, 310–314.CrossRefGoogle Scholar
  2. 2.
    Immerzeel, W. W., van Beek, L. P. H., & Bierkens, M. F. P. (2010). Climate change will affect the Asian water towers. Science, 238, 1382–1385.CrossRefGoogle Scholar
  3. 3.
    Kulkarni, A. V. (2014). Glaciers as a source of water: The Himalaya. Pontifical Academy of Sciences, 41, 1–6.Google Scholar
  4. 4.
    Kulkarni, A. V., & Karyakarte, Yogesh. (2014). Observed changes in Himalayan glaciers. Current Science, 106(2), 237–244.Google Scholar
  5. 5.
    Negi, H. S., Saravana, G., Rout, R., & Snehmani, (2013). Monitoring of great Himalayan glaciers in Patsio region, India using remote sensing and climatic observations. Current Science, 105(10), 1383–1392.Google Scholar
  6. 6.
    Rathore, B. P., Kulkarni, A. V., & Sherasia, N. K. (2009). Understanding future changes in snow and glacier melt runoff due to global warming in Wangar Gad basin, India. Current Science, 97(7), 1077–1081.Google Scholar
  7. 7.
    Bolch, T., Buchroithner, M. F., Pieczonka, T., & Kunert, (2008). Planimetric and volumetric glacier changes in the Khumbu Himalaya since 1962 using Corona, landsat TM and ASTER data. Journal of Glaciology, 54(187), 592–600.CrossRefGoogle Scholar
  8. 8.
    Jeffrey, S. K., Michael, J. A., Michael, P. B., Andrew, B., Gordon, H., Hester, J., et al. (2005). Multispectral imaging contributions to global land ice measurements from space. Remote Sensing of Environment, 99, 187–219.CrossRefGoogle Scholar
  9. 9.
    Kulkarni, A. V., Bahuguna, I. M., Rathore, B. P., Singh, S. K., Randhawa, S. S., Sood, R. K., et al. (2007). Glacial retreat in Himalaya using Indian remote sensing satellite data. Current Science, 92(1), 69–74.Google Scholar
  10. 10.
    Nainwal, H. C., Negi, B. D. S., Chaudhary, M., Sajwan, K. S., & Gaurav, Amit. (2008). Temporal changes in rate of recession evidences from satopanth and Bhagirath Kharak glaciers, Uttarakhand, using Total Station Survey. Current Science, 94(5), 653–660.Google Scholar
  11. 11.
    Venkatesh, T. N., Kulkarni, A. V., & Srinivasan, J. (2012). Relative effect of slope and equilibrium line altitude on the retreat of Himalayan glaciers. The Cryosphere Discussions, 6(2), 301–311.CrossRefGoogle Scholar
  12. 12.
    Basnett, S., Kulkarni, A. V., & Bolch, T. (2013). The influence of debris cover and glacial lakes on the recession of glaciers in Sikkim Himalaya, India. Journal of Glaciology, 59(218), 1035–1046.CrossRefGoogle Scholar
  13. 13.
    Kopacz, M., Mauzerall, D. L., Wang, J., Leibensperger, E. M., Henze, D. K., & Singh, K. (2011). Origin and radiative forcing of black carbon transported to the Himalayas and Tibetan Plateau. Atmospheric Chemistry and Physics, 11, 2837–2852.CrossRefGoogle Scholar
  14. 14.
    Kulkarni, A. V., Vinay Kumar, G., Negi, H. S., Srinivasan, J., & Satheesh, S. K. (2013). The effect of black carbon on reflectance of snow in the accumulation area of glaciers in the Baspa basin, Himachal Pradesh, India. The Cryosphere Discussion, 7, 1359–1382.CrossRefGoogle Scholar
  15. 15.
    Lau, K. M., Kim, M. K., Kim, K. M., & Lee, W. S. (2010). Enhanced surface warming and accelerated snow melt in the Himalayas and Tibetan Plateau induced by absorbing aerosols. Environmental Research Letters,. doi:10.1088/1748-9326/5/2/025204.Google Scholar
  16. 16.
    Ramanathan, V., Li, F., Ramana, M.V., Praveen, P. S., Kim, D., Corrigan, C. E., et al. (2007). Atmospheric brown clouds: Hemispherical and regional variations in long-range transport, absorption, and radiative forcing. Journal of Geophysical Research: Atmospheres. doi:10.1029/2006JD008124
  17. 17.
    Scherler, D., Bookhagen, B., & Strecker, M. R. (2011). Spatially variable response of Himalayan glaciers to climate change affected by debris cover. Nature Geoscience, 4, 156–159.CrossRefGoogle Scholar
  18. 18.
    Yasunari, T. J., Bonasoni, P., Laj, P., Fujita, K., Vuillermoz, E., Marinoni, A., et al. (2010). Estimated impact of black carbon deposition during pre-monsoon season from Nepal Climate Observatory—Pyramid data and snow albedo changes over Himalayan glaciers. Atmospheric Chemistry and Physics, 10, 6603–6615.CrossRefGoogle Scholar
  19. 19.
    Anderson, B., & Mackintosh, A. (2012). Controls on mass balance sensitivity of maritime glaciers in the Southern Alps, New Zealand: The role of debris cover. Journal of Geophysical Research. doi:10.1029/2011JF002064.
  20. 20.
    Oerlemans, J. (2001). Glaciers and climate change (pp. 1–148). Rotterdam: Balkema Publishers.Google Scholar
  21. 21.
    Paterson, W. S. B. (1998). The physics of Glaciers (pp. 318–321). Oxford: Pergamon Press.Google Scholar
  22. 22.
    Dobhal, D. P., Gergan, J. T., & Thayyen, R. J. (2008). Mass balance studies of the Dokriani glacier from 1992 to 2000, Garhwal Himalaya, India. Bulletin of Glaciological Research, 25, 9–17.Google Scholar
  23. 23.
    Koul, M. N., & Ganjoo, R. K. (2010). Impact of inter- and intra-annual variation in weather parameters on mass balance and equilibrium line altitude of Naradu glacier (Himachal Pradesh), NW Himalaya, India. Climatic Change. doi:10.1007/s10584-009-9660-9
  24. 24.
    Wagnon, P., Linda, A., Arnaud, Y., Kumar, R., Sharma, P., Vincent, C., et al. (2007). Four years of mass balance on Chhota Shigri Glacier, Himachal Pradesh, India, a new benchmark glacier in the western Himalaya. Journal of Glaciology, 53(183), 603–611.CrossRefGoogle Scholar
  25. 25.
    Raina, V. K. (2009). Glacial retreat and climate change: MOEF Discussion Paper, (pp. 1–60). Geological Survey of India.Google Scholar
  26. 26.
    Kulkarni, A. V. (1992). Mass balance of Himalayan glaciers using AAR and ELA methods. Journal of Glaciology, 38(128), 101–104.Google Scholar
  27. 27.
    Agarwal, A., & Tayal, S. (2013). Assessment of volume change in East Rathong glacier, Eastern Himalaya. International Journal of Geo-informatics, 9(1), 73–82.Google Scholar
  28. 28.
    Gardelle, J., Berthier, E., Arnaud, Y., & Kääb, A. (2013). Region-wide glacier mass balances over the Pamir–Karakoram–Himalaya during 1999–2011. The Cryosphere, 7, 1263–1286.CrossRefGoogle Scholar
  29. 29.
    Kulkarni, A. V., Rathore, B. P., & Alex, S. (2004). Monitoring of glacial mass balance in the Baspa basin using accumulation area ratio method. Current Science, 86(1), 101–106.Google Scholar
  30. 30.
    Kulkarni, A. V., Rathore, B. P., Singh, S. K., & Bahuguna, I. M. (2011). Understanding changes in Himalayan Cryosphere using remote sensing technique. International Journal of Remote Sensing, 32(3), 601–615.CrossRefGoogle Scholar
  31. 31.
    Pandey, P., Kulkarni, A. V., & Venkataraman, G. (2013). Remote sensing study of snowline altitude at the end of melting season, Chandra-Bhaga basin, Himachal Pradesh, 1980–2007. Geocarto International, 2828(4), 311–322.
  32. 32.
    Sangewar, C. V. (2012). Remote sensing applications to study Indian glaciers. Geocarto International, 27(3), 197–206.
  33. 33.
    Vincent, C., Ramanathan, Al, Wagnon, P., Dobhal, D. P., Linda, A., Berthier, E., et al. (2013). Balanced conditions or slight mass gain of glaciers in the Lahaul and Spiti region (northern India, Himalaya) during the nineties preceded recent mass loss. The Cryosphere, 7, 569–582.CrossRefGoogle Scholar
  34. 34.
    Azam, M. F., Wagnon, P., Vincent, C., Ramanathan, A., Linda, A., & Singh, V. B. (2014). Reconstruction of the annual mass balance of Chhota Shigri glacier, Western Himalaya, India, since 1969. Annals of Glaciology, 55(66), 69–80.CrossRefGoogle Scholar
  35. 35.
    Bhutiyani, M. R., Kale, V. S., & Pawar, N. J. (2007). Long term trends in maximum, minimum and mean annual air temperatures across the north western Himalaya during the 20th century. Climatic Change, 85, 159–177.CrossRefGoogle Scholar
  36. 36.
    Bhutiyani, M. R., Kale, V. S., & Pawar, N. J. (2006). Climate change and the precipitation variations in the north western Himalaya: 1866–2006. International Journal of Climatology,. doi:10.1002/joc.1920.Google Scholar
  37. 37.
    Shekhar, M. S., Chand, H., Kumar, S., Srinivasan, K., & Ganju, A. (2010). Climate-change studies in the western Himalaya. Annals of Glaciology, 51(54), 105–112.CrossRefGoogle Scholar
  38. 38.
    Chaturvedi, R. K., Kulkarni, A., Karyakarte, Y., Joshi, J., & Bala, G. (2014). Glacial mass balance changes in the Karakoram and Himalaya based on CMIP5 multi-model climate projections. Climatic Change. doi:10.1007/s10584-013-1052-5
  39. 39.
    Vaughan, D. G., Comiso, J. C., Allison, I., Carrasco, J., Kaser, G., Kwok, R., et al. (2013). Observations: Cryosphere. In Climate change 2013: The physical science basis (pp. 317–382). Cambridge, United Kingdom and New York, USA.Google Scholar
  40. 40.
    Lal, M. (2002). Possible impacts of global climate change on water availability in India. Report to Global Environment and Energy in the 21st Century, New Delhi.Google Scholar
  41. 41.
    Kulkarni, A. V., Randhawa, S. S., Rathore, B. P., Bahuguna, I. M., & Sood, R. K. (2002). A snow and glacier melt runoff model to estimate hydropower potential. Journal of Indian Society of Remote Sensing, 30(4), 221–228.CrossRefGoogle Scholar
  42. 42.
    Kaur, R., Kulkarni, A. V., & Chaudhary, B. S. (2010). Using resourcesat-1 data for determination of snow cover and snow-line altitude, Baspa basin, India. Annals of Glaciology, 50(54), 9–13.CrossRefGoogle Scholar
  43. 43.
    Raina, V. K., & Srivastava, D. (2009). Inventory of the Himalayan glaciers: A contribution to the international hydrological programme (Special Publication No. 34), Geological Survey of India.Google Scholar
  44. 44.
    Kulkarni, A. V., & Alex, Suja. (2003). Estimation of recent glacial variations in Baspa basin using remote sensing technique. Journal of Indian Society of Remote Sensing, 31(2), 81–90.CrossRefGoogle Scholar
  45. 45.
    Rupal, M., Brahmbhatt, Bahuguna, I. M., Rathore, B. P., Kulkarni, A. V., Nainwal, H. C., et al. (2012). A comparative study of deglaciation in two neighboring basins (Warwan and Bhut) of Western Himalaya. Current Science, 103(3), 298–304.Google Scholar
  46. 46.
    Kulkarni, A. V., Singh, S. K., Mathur, P., & Mishra, V. D. (2006). Algorithm to monitor snow cover using AWiFS data of RESOURCESAT for the Himalayan region. International Journal of Remote Sensing, 27(12), 2449–2457.CrossRefGoogle Scholar
  47. 47.
    Thomas Farmer, G., & John Cook. (2013). Climate change science: A modern synthesis: Volume 1- The physical climate (pp. 277–306). New York: Springer.Google Scholar
  48. 48.
    Kothawale, D. R., Munot, A. A., & Kumar, K. K. (2010). Surface air temperature variability over India during 1901–2007 and its association with ENSO. Climate Research, 42, 89–104.CrossRefGoogle Scholar
  49. 49.
    Rai, A., Joshi, M. K., & Pandey, A. C. (2012). Variations in diurnal temperature range over India: under global warming scenario. Geophysical Research Letters, 117, 1–12.Google Scholar
  50. 50.
    Bhambri, R., Bolch, T., Chaujar, R. K., & Kulshreshtha, S. C. (2011). Glacier changes in the Garhwal Himalaya, India, from 1968 to 2006 based on remote sensing. Journal of Glaciology, 57(203), 543–556.CrossRefGoogle Scholar
  51. 51.
    Azam, M. F., Wagnon, P., Ramanathan, A. L., Vincent, C., Sharma, P., Arnaud, Y., et al. (2012). From balance to imbalance: a shift in the dynamic behaviour of Chhota Shigri Glacier (western Himalaya, India). Journal of Glaciology. doi:10.3189/2012JoG11J123.
  52. 52.
    Dobhal, D. P., & Mehta, M. (2010). Surface morphology, elevation changes and terminus retreat of Dokriani glacier, Garhwal Himalaya: Implication for climate change. Himalayan Geology, 31(1), 71–78.Google Scholar
  53. 53.
    Dobhal, D. P., Mehta, M., & Srivastava, D. (2013). Influence of debris cover on terminus retreat and mass changes of Chorabari glacier, Garhwal region, central Himalaya, India. Journal of Glaciology, 59(217), 961–971.CrossRefGoogle Scholar

Copyright information

© Korean Spatial Information Society 2016

Authors and Affiliations

  • Vinay Kumar Gaddam
    • 1
    • 3
  • Anil V. Kulkarni
    • 2
  • Anil Kumar Gupta
    • 3
  1. 1.Cryosphere Science DivisionESSO-National Centre for Antarctic and Ocean ResearchVascodagamaIndia
  2. 2.Divecha Center for Climate ChangeIndian Institute of ScienceBangaloreIndia
  3. 3.Department of Civil EngineeringVisvesvaraya Technological UniversityBelgaumIndia

Personalised recommendations