Advertisement

ATZoffhighway worldwide

, Volume 10, Issue 3, pp 54–60 | Cite as

Real-time Estimation of the Remaining Lifetime of Components

  • Lars Brinkschulte
  • Marcus Geimer
Research Simulation
  • 11 Downloads

The availability of off-highway machines is gaining in importance, particularly with respect to seasonal use, such as agriculture. For example, machine failures can lead to considerable income losses during harvesting. At KIT, a method for the development of real-time capable models for the determination of the component loads of off-highway machines was developed. The strength calculation of the piston of an axial piston pump serves as an example of use. The stresses in the component are determined by a multi-body simulation coupled with a structure simulation, and are then used to create an artificial neural network. The quality of the generated models is shown on the basis of the criteria accuracy, reproducibility and computation time.

1 Motivation

In 2014, the net turnover in the agricultural business sector exceeded EUR 35 billion [1]. In the harvesting season, for instance, machine failures can lead to downtimes throughout the whole harvesting chain and, hence, to losses of...

Notes

Thanks

Some of the results were produced under a cooperation project supported by Mobima e. V.

References

  1. [1]
    N. N.: Brutto- und Nettowertschöpfung der Landwirtschaft in Deutschland in den Jahren 2011 bis 2014. www.lfl.bayern.de, 08.2016
  2. [2]
    N. N.: Instandhaltung — Begriffe der Instandhaltung. DIN EN 13306, 2015Google Scholar
  3. [3]
    Boog, M.: Steigerung der Verfügbarkeit mobiler Arbeitsmaschinen durch Betriebslasterfassung und Fehleridentifikation an hydrostatischen Verdrängereinheiten. Karlsruhe, KIT, Dissertation, 2010Google Scholar
  4. [4]
    Geimer, M.; Brinkschulte, L.: Von der Belastung zum Zustand — Condition-Monitoring- und Diagnose-Systeme in mobilen Arbeitsmaschinen. Conference: Elektrik/Elektronik in mobilen Arbeitsmaschinen, 2016Google Scholar
  5. [5]
    Bungartz, H. J. et al.: Modellbildung und Simulation. Eine anwendungsorientierte Einführung. Berlin, Heidelberg: Springer Spektrum, 2013zbMATHGoogle Scholar
  6. [6]
    Liu, J. W. S.: Real-Time Systems. Upper Saddle River, NJ: Prentince Hall, 2000Google Scholar
  7. [7]
    Vachtsevanos, G. et al.: Intelligent Fault Diagnosis and Prognosis for Engineering Systems. Hoboken, New Jersey: John Wiley & Sons, 2006CrossRefGoogle Scholar
  8. [8]
    Haibach, E.: Betriebsfestigkeit: Verfahren und Daten zur Bauteilberechnung. Berlin, Heidelberg: Springer-Verlag, 2006Google Scholar
  9. [9]
    Renius, K.-T.; Geimer, M.: Motoren und Getriebe bei Traktoren. In: Jahrbuch Agrartechnik 2013. Braunschweig: Institute of Mobile Machines and Commercial Vehicles, 2014. pp. 1–12Google Scholar
  10. [10]
    Findeisen, D.: Ölhydraulik: Handbuch der hydraulischen Antriebe und Steuerungen. Berlin, Heidelberg: Springer Vieweg, 2015Google Scholar
  11. [11]
    Degrell, O.; Feuerstein, T.: DLG-PowerMix — Ein praxisorientierter Traktorentest — Testzyklen. International Conference on Agricultural Engineering (Land.Technik AgEng), 2005Google Scholar
  12. [12]
    Zhang, Q.: Angewandte Modellbildung zur Zustandsüberwachung in mobilen Arbeitsmaschinen. Karlsruhe, KIT, master thesis, 2016Google Scholar
  13. [13]
    Totten, G. E. et al.: Hydraulic Failure Analysis, Fluids, Components and System Effects. West Conshohocken: ASTM, 2001CrossRefGoogle Scholar

Copyright information

© Springer Fachmedien Wiesbaden 2017

Authors and Affiliations

  • Lars Brinkschulte
    • 1
  • Marcus Geimer
    • 1
  1. 1.Institute of Vehicle System Technology of the Karlsruhe Institute of Technology (KIT)KarlsruheGermany

Personalised recommendations