Advertisement

Design and analysis of varied gaits in elastic vibratory milli-robots

  • Jinhong Qu
  • Buyi Zhang
  • Kenn R. OldhamEmail author
Regular Paper

Abstract

This paper introduces a simple centimeter-scale robot design that uses one or more pairs of piezoelectric, simultaneously-actuated legs to achieve multiple terrestrial gaits, notably jumping and running. The robot is designed for rapid prototyping using a planar geometry that has potential to be transferred to smaller-scales based on micro-fabrication processes, while allowing study of dynamics and control of elastic robot locomotion. Assembled robots are tested in jumping and running, with dynamic responses measured and compared to simulation from a numerical dynamic model. Energy costs of locomotion under various frequency and voltage scenarios are evaluated. Observed behavior emphasizes the impact of synchronizing leg motion in realizing certain gaits, despite the presence of fabrication variability. Scaling of robot dynamics and power consumption is briefly discussed to introduce possible outcomes for future robots manufactured at dimensions representative of microelectromechanical system (MEMS) transducers.

Keywords

Micro-robotics Rapid prototyping Piezoelectric actuation Dynamics 

Notes

Acknowledgements

The authors thank the National Science Foundation, award CMMI 1435222, for support of this work. The authors also thank Mr. Ketul Patel, Mr. Lu Wang, and Mr. Clark Teeple for their contributions to robot development.

Supplementary material

Supplementary material 1 (MOV 8335 kb)

References

  1. Brightvolt Inc.: Brightvolt 454523-25XT Data Sheet, www.brightvolt.com (2017)
  2. Cymbet Corp.: Energet Bare Die, www.cymbet.com (2016)
  3. Bachmann, R.J., Boria, F.J., Vaidyanathan, R., Ifju, P.G., Quinn, R.D.: A biologically inspired micro-vehicle capable of aerial and terrestrial locomotion. Mech. Mach. Theory 44(3), 513–526 (2009)CrossRefGoogle Scholar
  4. Bergbreiter, S., Pister, K.S.: Design of an autonomous jumping microrobot. In: IEEE International Conference on Robotics and Automation, pp. 447–453 (2007)Google Scholar
  5. Brufau-Penella, J., Sánchez-Martín, J., Puig-Vidal, M.: Piezoelectric polymer model validation applied to mm size micro-robot I-SWARM (intelligent swarm). Smart Structures and Materials, pp. 61660Q-61612 (2006)Google Scholar
  6. Chen, Y., Wang, H., Helbling, E.F., Jafferis, N.T., Zufferey, R., Ong, A., Ma, K., Gravish, N., Chirarattananon, P., Kovac, M.: A biologically inspired, flapping-wing, hybrid aerial-aquatic microrobot. Sci. Robot. 2(11), eaao5619 (2017)CrossRefGoogle Scholar
  7. Choi, J., Shin, M., Rudy, R.Q., Kao, C., Pulskamp, J.S., Polcawich, R.G., Oldham, K.R.: Thin-film piezoelectric and high-aspect ratio polymer leg mechanisms for millimeter-scale robotics. Int. J. Intell. Robot. Appl. 1, 180–184 (2017)CrossRefGoogle Scholar
  8. Christensen, D.L., Hawkes, E.W., Suresh, S.A., Ladenheim, K., Cutkosky, M.R.: μTugs: Enabling microrobots to deliver macro forces with controllable adhesives. In: International Conference on Robotics and Automation (ICRA), pp. 4048–4055 (2015)Google Scholar
  9. Dharmawan, A.G., Hariri, H.H., Foong, S., Soh, G.S., Wood, K.L.: Steerable miniature legged robot driven by a single piezoelectric bending unimorph actuator. IEEE International Conference on Robotics and Automation (ICRA), pp. 6008–6013 (2017)Google Scholar
  10. Drew, D.S., Pister, K.S.: First takeoff of a flying microrobot with no moving parts. In: International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS), pp. 1–5 (2017)Google Scholar
  11. Goldberg, B., Zufferey, R., Doshi, N., Heibling, E.F., Whittredge, G., Kovac, M., Wood, R.J.: Power and control autonomy for high-speed locomotion with an insect-scale legged robot. IEEE Robot. Autom. Lett. 3(2), 987–993 (2018)CrossRefGoogle Scholar
  12. Haldane, D.W., Plecnik, M., Yim, J.K., Fearing, R.S.: Robotic vertical jumping agility via series-elastic power modulation. Science Robotics 1(1), eaag2048 (2016)CrossRefGoogle Scholar
  13. Hoffman, K.L., Wood, R.J.: Passive undulatory gaits enhance walking in a myriapod millirobot. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1479–1486 (2011)Google Scholar
  14. Hollar, S., Flynn, A., Bellew, C., Pister, K.: Solar powered 10 mg silicon robot. In: Micro Electro Mechanical Systems, 2003. IEEE Sixteenth Annual International Conference on MEMS, Kyoyo, pp. 706–711 (2003)Google Scholar
  15. Jung, G.-P., Casarez, C.S., Jung, S.-P., Fearing, R.S., Cho, K.-J.: An integrated jumping-crawling robot using height-adjustable jumping module. IEEE Conf. Robot. Autom. (ICRA), pp. 4680–4685 (2016)Google Scholar
  16. Karpelson, M., Wei, G.-Y., Wood, R.J.: A review of power electronics options for flapping-wing robotic insects. In: IEEE International Conference on Robotics and Automation, Pasadena, CA (2008Google Scholar
  17. Koh, J.-S., Aukes, D.M., Araki, B., Pohorecky, S., Mulgaonkar, Y., Tolley, M.T., Kumar, V., Rus, D., Wood, R.J.: A modular folded laminate robot capable of multi modal locomotion. In: International Symposium on Experimental Robotics pp. 59–70 (2016)Google Scholar
  18. Koh, J.-S., Cho, K.-J.: Omegabot: Crawling robot inspired by ascotis selenaria. IEEE International Conference on Robotics and Automation (ICRA), pp. 109–114 (2010)Google Scholar
  19. Li, H., Tan, J., Zhang, M.: Dynamics modeling and analysis of a swimming microrobot for controlled drug delivery. IEEE Trans. Autom. Sci. Eng. 6(2), 220–227 (2009)CrossRefGoogle Scholar
  20. Moon, Y., Jeong, D.-K.: An efficient charge recovery logic circuit. IEEE J. Solid-State Circuits 31(4), 514–522 (1996)CrossRefGoogle Scholar
  21. Patel, K., Qu, J., Oldham, K.R.: Tilted leg design for a rapid prototyped low-voltage piezoelectric running robot. In: International Conference on Manipulation, Automation, and Robotics at Small Scales, Nagoya (2018)Google Scholar
  22. Pierre, R.S., Bergbreiter, S.: Gait exploration of sub-2 g robots using magnetic actuation. IEEE Robot. Autom. Lett. 2(1), 34–40 (2017)CrossRefGoogle Scholar
  23. Qu, J., Teeple, C.B., Oldham, K.R.: Modeling legged microrobot locomotion based on contact dynamics and vibration in multiple modes and axes. J. Vib. Acoust. 139(3), 031013 (2017a)CrossRefGoogle Scholar
  24. Qu, J., Choi, J., Oldham, K.: Dynamic Structural and Contact Modeling for a Silicon Hexapod Microrobot. J. Mech. Robot. 9(6), 061006 (2017b)CrossRefGoogle Scholar
  25. Rios, S.A., Fleming, A.J., Yong, Y.K.: Miniature resonant ambulatory robot. IEEE Robot. Autom. Lett. 2(1), 337–343 (2017)CrossRefGoogle Scholar
  26. Rios, S.A., Fleming, A.J., Yong, Y.K.: Monolithic piezoelectric insect with resonance walking. IEEE/ASME Trans. Mechatron. 23(2), 524–530 (2018)CrossRefGoogle Scholar
  27. Rose, C.J., Mahmoudieh, P., Fearing, R.S.: Coordinated launching of an ornithopter with a hexapedal robot. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 4029–4035 (2015)Google Scholar
  28. Rudy, R., Cohen, A.J., Pulskamp, J.S., Polcawich, R.G., Oldham, K.R.: Antenna-like tactile sensor for thin-film piezoelectric micro-robots. In: ASME International Design Engineering Technical Conferences, pp. V001T009A023 (2015)Google Scholar
  29. Ryou, J.-H., Oldham, K.R.: Dynamic characterization of contact interactions of micro-robotic leg structures. Smart Mater. Struct. 23, 055014 (2014)CrossRefGoogle Scholar
  30. Shen, Z., Liu, Y., Zhao, J., Tang, X., Chen, W.: Design and experiment of a small legged robot operated by resonant vibrations of cantilever beams. IEEE Access 5, 8451–8458 (2017)CrossRefGoogle Scholar
  31. Su, Q., Quan, Q., Deng, J., Yu, H.: A quadruped micro-robot based on piezoelectric driving. Sensors 18, 810–819 (2018)CrossRefGoogle Scholar
  32. Teichert, K., Oldham, K.R.: Characteristics of thin-film batteries cycled over capacitive loads. In: IEEE International Conference on Advanced Intelligent Mechatronics, Banff, AB (2016)Google Scholar
  33. Teichert, K., Oldham, K.R.: Solid-state battery modeling cases studies for the analysis of a micro-robot power system. In: ASME Dynamic Systems and Control Conference, Atlanta GA (2018)Google Scholar
  34. Wood, R.J.: The first takeoff of a biologically inspired at-scale robotic insect. IEEE Trans. Rob. 24(2), 341–347 (2008)CrossRefGoogle Scholar
  35. Xu, Z., Wang, Y., and Chen, C.: Micro converter with a high step-up ratio to drive a piezoelectric bimorph actuator applied in mobile robots. Int. J. Adv. Rob. Syst. pp. 1–9 (2018)Google Scholar
  36. Zarrouk, D., Fearing, R.S.: Controlled in-plane locomotion of a hexapod using a single actuator. IEEE Trans. Rob. 31(1), 157–167 (2015)CrossRefGoogle Scholar
  37. Zhang, B., Qu, J., Oldham, K.R.: Experimental evaluation of piezoelectric self-sensing during terrestrial locomotion of a miniature legged robot. In: IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Auckland (2018)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringUniversity of MichiganAnn ArborUSA

Personalised recommendations