Advertisement

Autonomous robotic system for tunnel structural inspection and assessment

  • Konstantinos LouposEmail author
  • Anastasios D. Doulamis
  • Christos Stentoumis
  • Eftychios Protopapadakis
  • Konstantinos Makantasis
  • Nikolaos D. Doulamis
  • Angelos Amditis
  • Philippe Chrobocinski
  • Juan Victores
  • Roberto Montero
  • Elisabeth Menendez
  • Carlos Balaguer
  • Rafa Lopez
  • Miquel Cantero
  • Roman Navarro
  • Alberto Roncaglia
  • Luca Belsito
  • Stephanos Camarinopoulos
  • Nikolaos Komodakis
  • Praveer Singh
Regular Paper

Abstract

This paper presents a robotic platform, capable of autonomous tunnel inspection, developed under ROBO-SPECT European union funded research project. The robotic vehicle consists of a robotized production boom lift, a high precision robotic arm, advanced computer vision systems, a 3D laser scanner and an ultrasonic sensor. The autonomous inspection of tunnels requires advanced capabilities of the robotic vehicle and the computer vision sub-system. The robot localization in underground spaces and on long linear paths is a challenging task, as well as the mm accurate positioning of a robotic tip installed on a five-ton crane vehicle. Moreover, the 2D and 3D vision tasks, which support the inspection process, should tackle with poor and variable lighting conditions, low textured lining surfaces and the need for high accuracy. This contribution describes the final robotic vehicle and the developments as designed for concrete lining tunnel inspection. Results from the validation and benchmarking of the system are also included following the final tests at the operating Egnatia Motorway tunnels in northern Greece.

Keywords

Autonomous robot Tunnel inspection Structural assessment Computer vision system Autonomous navigation Ultrasonic sensors 

Notes

Acknowledgements

The research leading to the above described results has received funding from the EC FP7-ICT project ROBO-SPECT (Contract no. 611145). Authors would like to thank all partners within the ROBO-SPECT consortium.

References

  1. Arel, I., Rose, D.C., Karnowski, T.P.: Deep machine learning—a new frontier in artificial intelligence research [Research Frontier]. IEEE Comput. Intell. Mag. 5(4), 13–18 (2010)CrossRefGoogle Scholar
  2. Botelho, F.: A light at the end of the tunnel. Public Roads 65(1) (2001)Google Scholar
  3. Brosnan, T., Sun, D.W.: Improving quality inspection of food products by computer vision—a review. J. Food Eng. 61(1), 3–16 (2004)CrossRefGoogle Scholar
  4. Brownjohn, J.M.W.: Structural health monitoring of civil infrastructure. Philos. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci. 365(1851), 589–622 (2007)CrossRefGoogle Scholar
  5. Delatte, Jr., N.J.: Beyond failure. Forensic case studies for civil engineers (2009)Google Scholar
  6. Frangopol, D.M., Liu, M.: Maintenance and management of civil infrastructure based on condition, safety, optimization, and life-cycle cost. Struct. Infrastruct. Eng. 3(1), 29–41 (2007)CrossRefGoogle Scholar
  7. Fujita, Y., Mitani, Y., Hamamoto, Y.: A method for crack detection on a concrete structure. Proc. 18th Int. Conf. Pattern Recogn. 3, 901–904 (2006)Google Scholar
  8. Georgousis, S., Stentoumis, C., Doulamis, N., Voulodimos, A.: A hybrid algorithm for dense stereo correspondences in challenging indoor scenes. IEEE International Conference on Imaging Systems and Technology IST 2016, Oct., Chania, Greece (2016)Google Scholar
  9. Gutchess, D., Trajkovics, M., Cohen-Solal, E., Lyons, D., Jain, A.K.: A background model initialization algorithm for video surveillance. IEEE Int Conf Comput Vis ICCV 1, 733–740 (2001)Google Scholar
  10. Huet, C., Mastroddi, Franco: Autonomy for underwater robots—a European perspective. Auton. Robots 40(7), 1113–1118 (2016)CrossRefGoogle Scholar
  11. Ibrahim, Y.M., Lukins, T.C., Zhang, X., Trucco, E., Kaka, A.P.: Towards automated progress assessment of workpackage components in construction projects using computer vision. Adv. Eng. Inform. 23(1), 93–103 (2009)CrossRefGoogle Scholar
  12. Jahanshahi, M.R., Masri, S.F.: Adaptive vision-based crack detection using 3D scene reconstruction for condition assessment of structures. Autom. Constr. 22, 567–576 (2012)CrossRefGoogle Scholar
  13. Jeong, D.H., Kim, Y.R., Cho, I.-S., Kim, E.J., Lee, K.M., Jin, K.W., Song, C.G.: Real-time image scanning system for detecting tunnel cracks using linescan cameras. J. Korea Multimed. Soc. 10(6) (2007)Google Scholar
  14. Klammer, D.M., Bauer, F., Dietzel, C., Köhler, M., Leis, S.: Thaumasite Formation from Sulphate Attack (TSA). Case Study at Austrian Tunnel Sites. www.dmg-home.de/DMG-CD/filedir/365_abstract.pdf. Accessed on 12/2/2012)
  15. Koch, C., Paal, S.G., Rashidi, A., Zhu, Z., König, M., Brilakis, I.: Achievements and challenges in machine vision-based inspection of large concrete structures. Adv. Struct. Eng. 17(3), 303–318 (2014)CrossRefGoogle Scholar
  16. Loupos, K., Amditis, A., Chrobocinski, P., Montero, R., Belsito, L., Lopez, R., Doulamis, N.: Autonomous robot for tunnel inspection and assessment. 6th International Symposium on Tunnels and Underground Structures in See Urban, Underground Structures. In Karst, Radisson Blu Resort, Split, Croatia, March 16–18 (2016)Google Scholar
  17. Loupos, K., Amditis, A., Stentoumis, C., Chrobocinski, P., Victores, J., Wietek, M., Panetsos, P., Roncaglia, A., Camarinopoulos, S., Kallidromitis, V., Bairaktaris, D., Komodakis, N., Lopez, R.: Robotic intelligent vision and control for tunnel inspection and evaluation—the ROBINSPECT EC Project. IEEE International Symposium on Robotic and Sensors Environments 16–18 October, 2014. Timisoara, Romania (2014)Google Scholar
  18. Loupos, K., Amditis, A., Stentoumis, C.: Integrated robotic system for tunnel structural assessment—the ROBO-SPECT EC project. World Tunnel Congress (2015)Google Scholar
  19. Makantasis, K., Protopapadakis, E., Doulamis, A., Doulamis, N., Loupos, C.: Deep convolutional neural networks for efficient vision based tunnel inspection. In: 2015 IEEE International Conference on Intelligent Computer Communication and Processing (ICCP), pp. 335–342 (2015)Google Scholar
  20. Metta, G., Fitzpatrick, P., Natale, L.: YARP: yet another robot platform. Int J Adv Robot Syst 3(1), 43–48 (2006)CrossRefGoogle Scholar
  21. Montero, R., Victores, J.G., Martínez, S., Jardón, A., Balaguer, C.: Past, present and future of robotic tunnel inspection. Autom. Constr. 59, 99–112 (2015)CrossRefGoogle Scholar
  22. Paar,G., Kontrus, H.: Three-dimensional tunnel reconstruction using photogrammetry and laser scanning. 3rd Nordost, 9. Anwendungsbezogener Workshop zur Erfassung, Modellierung, Verarbeitung und Auswertung von 3D-Daten, Berlin (2006)Google Scholar
  23. Protopapadakis, E., Doulamis, N.: Image based approaches for tunnels’ defects recognition via robotic inspectors. In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., Pavlidis, I., Feris, R., McGraw, T., Elendt, M., Kopper, R., Ragan, E., Ye, Z., Weber, G. (eds.) Advances in visual computing, pp. 706–716. Springer, Berlin (2015)CrossRefGoogle Scholar
  24. Protopapadakis, E., Makantasis, K., Kopsiaftis, G., Doulamis, N.D., Amditis, A.: Crack identification via user feedback, convolutional neural networks and laser scanners for tunnel infrastructures. In: RGB-SpectralImaging, Rome (2016)Google Scholar
  25. Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., et al.: ROS: an open-source robot operating system. In: ICRA Workshop on Open Source Software, Vol. 3, No. 3.2, p. 5 (2009)Google Scholar
  26. Rudol, P., Doherty, P.: Human body detection and geolocalization for UAV search and rescue missions using color and thermal imagery. IEEE Aerospace Conference (2008)Google Scholar
  27. Soga, K., Chaiyasarn, K., Viola, F., Yan, J., Seshia, A., Cipolla, R.: Innovation in monitoring technologies for underground structures. In: Proceedings of the 1st Int. Conf. Information Technology in Geo-Engineering, (ICITG) Shangai, IOS Press, pp. 3–18 (2010)Google Scholar
  28. Stentoumis, C., Amditis, A., Karras, G.: Census-based cost on gradients for matching under illumination differences. IEEE International Conference 3D Vision, Lyon, pp. 224–231 (2015)Google Scholar
  29. Stentoumis, C., Protopapadakis, E., Doulamis, A., Doulamis, N.: A holistic approach for inspection of civil infrastructures based on computer vision techniques. In: ISPRS—International Archives of the Photogrammetry, Remote Sensing and Spatial Information, pp 131–138 (2016)Google Scholar
  30. Stentoumis, C., Grammatikopoulos, L., Kalisperakis, I., Karras, G.: On accurate dense stereo-matching using a local adaptive multi-cost approach. ISPRS J Photogramm. Remote Sens. 91, 29–49 (2014). doi: 10.1016/j.isprsjprs.2014.02.006 CrossRefGoogle Scholar
  31. Sulibhavi, G.R., Parks, W.A.: Advanced methods for tunnel assessment. In: Proceedings of the World Tunnel Congress 2007 and 33rd ITA/AITES Annual General Assembly, Prague (2007)Google Scholar
  32. Sumitro, S., Okam, T., Inaudi, D.: Intelligent sensory technology for health monitoring based maintenance of infrastructures. 11th Spie’s Annual International Symposium On Smart Structures And Materials, March 14–18, San Diego, USA (2004)Google Scholar
  33. Victores, J.G., Martínez, S., Balaguer, C.: Robot-aided tunnel inspection and maintenance system by vision and proximity sensor integration. Autom. Constr. 20(5), 629–636 (2011)CrossRefGoogle Scholar
  34. Voulodimos, A., Kosmopoulos, D., Vasileiou, G., Sardis, E., Anagnostopoulos, V., Lalos, C., Doulamis, A., Varvarigou, T.: Large-scale multimedia data collections: a threefold dataset for activity and workflow recognition in complex industrial environments. IEEE Multimedia Magazine, pp. 42–52, July–September (2012)Google Scholar
  35. Wang, X.: Intelligent multi-camera video surveillance: a review. Pattern Recogn. Lett. 34(1), 3–19 (2013)CrossRefGoogle Scholar
  36. Yao, F.-H., Shao, G.-F., Yamada, H., Kato, K.: Development of an automatic concrete-tunnel inspection system by an autonomous mobile robot. 9th IEEE International Workshop on Robot and Human Interactive Communication (2009)Google Scholar
  37. Yoon, J.-S., Sagong, M., Lee, J.S., Lee, K.-S.: Feature extraction of a concrete tunnel liner from 3D laser scanning data. NDT and E International, 42(2), March, pp. 97–105 (2009)Google Scholar
  38. Yu, S., Jang, J.-H., Han, C.-S.: Auto Inspection System Using a Mobile Robot for Detecting Concrete Cracks in a Tunnel. Autom. Constr. 16, 255–261 (2007a)CrossRefGoogle Scholar
  39. Yu, S.-N., Jang, J.-H., Han, C.-S.: Auto inspection system using a mobile robot for detecting concrete cracks in a tunnel. Autom. Constr. 16(3), 255–261 (2007b)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  • Konstantinos Loupos
    • 1
    Email author
  • Anastasios D. Doulamis
    • 1
  • Christos Stentoumis
    • 1
  • Eftychios Protopapadakis
    • 1
  • Konstantinos Makantasis
    • 1
  • Nikolaos D. Doulamis
    • 1
  • Angelos Amditis
    • 1
  • Philippe Chrobocinski
    • 2
  • Juan Victores
    • 3
  • Roberto Montero
    • 3
  • Elisabeth Menendez
    • 3
  • Carlos Balaguer
    • 3
  • Rafa Lopez
    • 4
  • Miquel Cantero
    • 4
  • Roman Navarro
    • 4
  • Alberto Roncaglia
    • 5
  • Luca Belsito
    • 5
  • Stephanos Camarinopoulos
    • 6
  • Nikolaos Komodakis
    • 7
  • Praveer Singh
    • 7
  1. 1.Institute of Communication and Computer SystemsAthensGreece
  2. 2.AIRBUS DSElancourtFrance
  3. 3.Universidad Carlos III De MadridMadridSpain
  4. 4.ROBOTNIK AUTOMATION SLLValenciaSpain
  5. 5.Institute of Microelectronics and Microsystems, CNRBolognaItaly
  6. 6.RISA SICHERHEITSANALYSEN GMBHBerlinGermany
  7. 7.Ecole Nationale Des Ponts Et ChausseesParisFrance

Personalised recommendations