Advertisement

Advances in Neurodevelopmental Disorders

, Volume 3, Issue 3, pp 297–305 | Cite as

Neurodevelopment in Infants with Moderate Neonatal Risk and Its Association with Biological and Environmental Factors

  • Agustina VericatEmail author
  • Alicia B. Orden
ORIGINAL PAPER
  • 22 Downloads

Abstract

Objectives

Moderate-risk neonates (MRNs) are newborns who usually remain hospitalized in neonatal intensive care units (NICU) after birth. Although they have low rates of mortality, morbidity burden may be significant and involve neurological risk. The aim of this study was to estimate the prevalence of neurodevelopmental disorders and the influence of biological and socio-environmental factors on the neurodevelopment of MRN.

Methods

A cross-sectional study was performed on a sample of 162 MRNs aged 2–24 months, who remained in NICU ≥ 72 h after birth, with gestational age (GA) ≥ 34 weeks, birth weight ≥ 1500 g, and normal neurological and clinical examinations by the time of hospital discharge. Four neurodevelopmental areas were assessed using the Argentinian test PRUNAPE: language (LG), fine and gross motor skills (FM and GM), and personal-social skills (PS). Data from biological (gestational, perinatal and postnatal) and socio-environmental factors were collected through parental questionnaires.

Results

Thirty-four percent of infants failed the test. Gross motor was the most affected area (14.2%), followed by LG (11.7%), FM (7.4%), and PS (4.3%). Among gestational factors global failure was associated with drugs and alcohol consumption (p ≤ 0.029). Language was associated with maternal smoking (p = 0.007; OR 3.5), FM (p = 0.009; OR 13.0), and GM (p = 0.002; OR 10.6) with drug use, and both LG (p = 0.000; OR 22.6) and GM (p = 0.007; OR 16.2) with alcohol consumption during pregnancy. Infants born by cesarean had a higher risk of failure than those born by vaginal delivery (p = 0.049; OR: 2.2), as well as infants with pathological complementary diagnosis (p = 0.001; OR 2.7). Mechanical ventilation was associated with FM disorders (p = 0.025; OR 4.2). Children with siblings had a higher risk of failing the test than only children (p = 0.041; OR 2.0).

Conclusions

Rate of neurodevelopmental disorders in MRN exceeds widely that of the general population. GM was the most affected area. Maternal addictions, cesarean birth, pathological complementary studies, MV, and having siblings are factors associated with failure in the screening.

Keywords

Neurodevelopmental disorders Biological factors Socioeconomic factors Screening test 

Notes

Acknowledgments

The authors gratefully acknowledge the unselfish participation of the children’s families and support from the San Roque’s Hospital staff. The authors would also like to thank Muriel Lamarque for reviewing the writing and final version of the manuscript.

Authors’ Contributions

AV designed and coordinated the study. She also assessed the children. ABO participated in the study design, performed the data analyses, and interpreted the results. Both authors wrote and approved the final manuscript.

Compliance with Ethical Standards

All procedures followed were in accordance with the ethical standards of the Institutional Research Committee of the San Roque Hospital.

Conflict of Interest

The authors declare that they have no conflict of interest.

Informed Consent

Informed consent was obtained from all participants included in the study.

References

  1. Allen, M. C. (2008). Neurodevelopmental outcomes of preterm infants. Current Opinion in Neurology, 21(2), 123–128.CrossRefGoogle Scholar
  2. Blake, J. (1981). Family size and the quality of children. Demography, 18(4), 421–442.CrossRefGoogle Scholar
  3. Bolisetty, S., Dhawan, A., Abdel-Latif, M., Bajuk, B., Stack, J., & Lui, K. (2014). Intraventricular hemorrhage and neurodevelopmental outcomes in extreme preterm infants. Pediatrics, 133(1), 55–62.CrossRefGoogle Scholar
  4. Brazelton, T. B. (2018). The earliest relationship: parents, infants and the drama of early attachment. New York: Routledge.CrossRefGoogle Scholar
  5. Ceriani Cernadas, J. M. (2015). Late-preterm infants, a growing challenge in both the short and long term. Archivos Argentinos de Pediatría, 113(6), 482–484.Google Scholar
  6. Chang, H. H., Larson, J., Blencowe, H., Spong, C. Y., Howson, C. P., Cairns-Smith, S., et al. (2013). Preventing preterm births: analysis of trends and potential reductions with interventions in 39 countries with very high human development index. The Lancet, 381(9862), 223–234.CrossRefGoogle Scholar
  7. Cheng, Y. W., Nicholson, J. M., Nakagawa, S., Bruckner, T. A., Washington, E., & Caughey, A. B. (2008). Perinatal outcomes in low-risk term pregnancies: do they differ by week of gestation? American Journal of Obstetrics and Gynecology, 199(4), 370.e1–370.e7.  https://doi.org/10.1016/j.ajog.2008.08.008.CrossRefGoogle Scholar
  8. Cheong, J. L., Doyle, L. W., Burnett, A. C., Lee, K. J., Walsh, J. M., Potter, C. R., et al. (2017). Association between moderate and late preterm birth and neurodevelopment and social-emotional development at age 2 years. JAMA Pediatrics, 171(4), e164805.CrossRefGoogle Scholar
  9. Cioni, G., Inguaggiato, E., & Sgandurra, G. (2016). Early intervention in neurodevelopmental disorders: underlying neural mechanisms. Developmental Medicine & Child Neurology, 58(S4), 61–66.CrossRefGoogle Scholar
  10. Conradt, E., Crowell, S., & Lester, B. M. (2018). Early life stress and environmental influences on the neurodevelopment of children with prenatal opioid exposure. Neurobiology of stress, 9, 48–54.CrossRefGoogle Scholar
  11. Daga, S. R., Desai, B., Desai, S., Siiende, N., & Masiialkar, E. (1996). Care of low risk babies in post-natal guard. Journal of Obstetrics and Gynaecology of India, 46(3), 365–367.Google Scholar
  12. Del Campo, M., & Jones, K. L. (2017). A review of the physical features of the fetal alcohol spectrum disorders. European Journal of Medical Genetics, 60(1), 55–64.CrossRefGoogle Scholar
  13. Deoni, S. C., Adams, S. H., Li, X., Badger, T. M., Pivik, R. T., Glasier, C. M., et al. (2019). Cesarean delivery impacts infant brain development. American Journal of Neuroradiology, 40(1), 169–177.CrossRefGoogle Scholar
  14. Desplats, P. A. (2015). Perinatal programming of neurodevelopment: epigenetic mechanisms and the prenatal shaping of the brain. In M. C. Antonelli (Ed.), Perinatal programming of neurodevelopment (pp. 335–361). New York: Springer.CrossRefGoogle Scholar
  15. Doyle, L. W., Anderson, P. J., Battin, M., Bowen, J. R., Brown, N., Callanan, C., et al. (2014). Long term follow up of high risk children: who, why and how? BMC Pediatrics, 14, 279.  https://doi.org/10.1186/1471-2431-14-279.CrossRefGoogle Scholar
  16. Fagan, M. K., Pisoni, D. B., Horn, D. L., & Dillon, C. M. (2007). Neuropsychological correlates of vocabulary, reading, and working memory in deaf children with cochlear implants. Journal of Deaf Studies and Deaf Education, 12(4), 461–471.CrossRefGoogle Scholar
  17. Fraile Sánchez, C. (2015). Posibles implicaciones del parto por cesárea en la aparición de problemas logopédicos. http://uvadoc.uva.es/handle/10324/12989.
  18. Fried, P. A., & Watkinson, B. (1990). 36-and 48-month neurobehavioral follow-up of children prenatally exposed to marijuana, cigarettes, and alcohol. Journal of Developmental and Behavioral Pediatrics, 11(2), 49–58.CrossRefGoogle Scholar
  19. Garibotti, G., Comar, H., Vasconi, C., Giannini, G., & Pittau, C. (2013). Child psychomotor development and its relationship with socio-demographic and family stimulation factors in children from Bariloche, Argentina. Archivos Argentinos de Pediatria, 111(5), 384–390.Google Scholar
  20. Gkioka, E., Korou, L. M., Daskalopoulou, A., Misitzi, A., Batsidis, E., Bakoyiannis, I., et al. (2016). Prenatal cocaine exposure and its impact on cognitive functions of offspring: a pathophysiological insight. Reviews in the Neurosciences, 27(5), 523–534.CrossRefGoogle Scholar
  21. Jarjour, I. T. (2015). Neurodevelopmental outcome after extreme prematurity: a review of the literature. Pediatric Neurology, 52(2), 143–152.  https://doi.org/10.1016/j.pediatrneurol.2014.10.027.CrossRefGoogle Scholar
  22. Juárez, S. P., Small, R., Hjern, A., & Schytt, E. (2017). Caesarean birth is associated with both maternal and paternal origin in immigrants in Sweden: a population-based study. Paediatric and Perinatal Epidemiology, 31(6), 509–521.CrossRefGoogle Scholar
  23. Kapellou, O. (2011). Effect of caesarean section on brain maturation. Acta Paediatrica, 100(11), 1416–1422.CrossRefGoogle Scholar
  24. Kundakovic, M., & Jaric, I. (2017). The epigenetic link between prenatal adverse environments and neurodevelopmental disorders. Genes, 8(3),  https://doi.org/10.3390/genes8030104.
  25. Law, K. L., Stroud, L. R., LaGasse, L. L., Niaura, R., Liu, J., & Lester, B. M. (2003). Smoking during pregnancy and newborn neurobehavior. Pediatrics, 111(6), 1318–1323.CrossRefGoogle Scholar
  26. Lejarraga, H., del Pino, M., Kelmansky, D., Laurencena, E., Ledri, I., Laspiur, M., et al. (2005). Edad de la pauta madurativa “mamá-papá específico” en una muestra de niños sanos. Archivos Argentinos de Pediatría, 103(6), 514–518.Google Scholar
  27. Lejarraga, H., Menéndez, A. M., Menzano, E., Guerra, L., Biancato, S., Pianelli, P., et al. (2008). PRUNAPE: Screening for psychomotor development problems at primary care level. Archivos Argentinos de Pediatria, 106(2), 119–125.Google Scholar
  28. Lejarraga, H., Kelmansky, D., & Nunes, F. (2018). Developmental tempo in children aged 0-5 years living under unfavourable environmental conditions. Archivos Argentinos de Pediatria, 116(2), e210–e215.Google Scholar
  29. MacKay, D. F., Smith, G. C., Dobbie, R., & Pell, J. P. (2010). Gestational age at delivery and special educational need: retrospective cohort study of 407,503 schoolchildren. PLoS Medicine, 7(6), e1000289.CrossRefGoogle Scholar
  30. McDonald, S. W., Kehler, H. L., & Tough, S. C. (2018). Risk factors for delayed social-emotional development and behavior problems at age two: results from the all our babies/families (AOB/F) cohort. Health science reports, 1(10), e82.CrossRefGoogle Scholar
  31. McGowan, J. E., Alderdice, F. A., Holmes, V. A., & Johnston, L. (2011). Early childhood development of late-preterm infants: a systematic review. Pediatrics, 127(6), 1111–1124.CrossRefGoogle Scholar
  32. Narberhaus, A., Segarra-Castells, M. D., Pueyo-Benito, R., Botet-Mussons, F., & Junque, C. (2008). Long-term cognitive dysfunctions in preterm subjects with intraventricular haemorrhage. Revista de Neurologia, 47(2), 57–60.CrossRefGoogle Scholar
  33. Neri, M., Bello, S., Turillazzi, E., & Riezzo, I. (2015). Drugs of abuse in pregnancy, poor neonatal development, and future neurodegeneration. Is oxidative stress the culprit? Current Pharmaceutical Design, 21(11), 1358–1368.CrossRefGoogle Scholar
  34. Orton, J. L., Olsen, J. E., Ong, K., Lester, R., & Spittle, A. J. (2018). NICU graduates: the role of the allied health team in follow-up. Pediatric Annals, 47(4), e165–e171.  https://doi.org/10.3928/19382359-20180325-02.CrossRefGoogle Scholar
  35. Polanska, K., Krol, A., Merecz-Kot, D., Ligocka, D., Mikolajewska, K., Mirabella, F., et al. (2017). Environmental tobacco smoke exposure during pregnancy and child neurodevelopment. International Journal of Environmental Research and Public Health, 14(7), 796.CrossRefGoogle Scholar
  36. Rauh, V. A., & Margolis, A. E. (2016). Research review: environmental exposures, neurodevelopment, and child mental health–new paradigms for the study of brain and behavioral effects. Journal of Child Psychology and Psychiatry, 57(7), 775–793.CrossRefGoogle Scholar
  37. Rebollo, D. M., Seoane, S., Videla, V., Contreras, M. M., Araoz, L., Napoli, S., et al. (2008). Prevalencia de trastornos del desarrollo en consultorios de mediano riesgo del Hospital Garrahan. Medicina Infantil, 15(4), 330–335.Google Scholar
  38. Ryckman, J., Hilton, C., Rogers, C., & Pineda, R. (2017). Sensory processing disorder in preterm infants during early childhood and relationships to early neurobehavior. Early Human Developement, 113, 18–22.CrossRefGoogle Scholar
  39. Schonhaut, L., Rojas, P., & Kaempffer, A. M. (2005). Factores de riesgo asociados a déficit del desarrollo psicomotor en preescolares de nivel socioeconómico bajo: comuna urbano rural, Región Metropolitana, 2003. Revista Chilena de Pediatría, 76(6), 589–598.CrossRefGoogle Scholar
  40. Simard, M. N., Lambert, J., Lachance, C., Audibert, F., & Gosselin, J. (2011). Prediction of developmental performance in preterm infants at two years of corrected age: contribution of the neurological assessment at term age. Early Human Development, 87(12), 799–804.CrossRefGoogle Scholar
  41. Simon-Areces, J., Dietrich, M.O., Hermes, G., Garcia-Segura, L M., Arevalo, M.A., & Horvath, T.L. (2012). UCP2 induced by natural birth regulates neuronal differentiation of the hippocampus and related adult behavior. PLoS One, 7(8),  https://doi.org/10.1371/journal.pone.0042911.
  42. Soares, A. C. C., Silva, K. D., & Zuanetti, P. A. (2017). Risk factors for language development associated with prematurity. Audiology, Communication Research.  https://doi.org/10.1590/2317-6431-2016-1745.
  43. Tsai, W. H., Hwang, Y. S., Hung, T. Y., Weng, S. F., Lin, S. J., & Chang, W. T. (2014). Association between mechanical ventilation and neurodevelopmental disorders in a nationwide cohort of extremely low birth weight infants. Research in Developmental Disabilities, 35(7), 1544–1550.CrossRefGoogle Scholar
  44. Urzúa, A., Méndez, F., Acuña, C., & Astudillo, J. (2010). Calidad de vida relacionada con la salud en edad preescolar. Revista Chilena de Pediatría, 81(2), 129–138.CrossRefGoogle Scholar
  45. Vassoler, F. M., Byrnes, E. M., & Pierce, R. C. (2014). The impact of exposure to addictive drugs on future generations: physiological and behavioral effects. Neuropharmacology, 76, 269–275.CrossRefGoogle Scholar
  46. Vericat, A., & Orden, A. B. (2017). Riesgo neurológico en el niño de mediano riesgo neonatal. Acta Pediátrica de México, 38(4), 255–266.CrossRefGoogle Scholar
  47. Villar, J., Valladares, E., Wojdyla, D., Zavaleta, N., Carroli, G., Velazco, A., et al. (2006). Caesarean delivery rates and pregnancy outcomes: the 2005 WHO global survey on maternal and perinatal health in Latin America. The Lancet, 367(9525), 1819–1829.CrossRefGoogle Scholar
  48. Williams Brown, C., Carmichael Olson, H., & Croninger, R. G. (2010). Maternal alcohol consumption during pregnancy and infant social, mental, and motor development. Journal of Early Intervention, 32(2), 110–126.CrossRefGoogle Scholar
  49. Zajonc, R. B. (2001). The family dynamics of intellectual development. American Psychologist, 56(6–7), 490–496.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Universidad Nacional de la Plata (UNLP) and Hospital “San Roque” de GonnetLa PlataArgentina
  2. 2.CONICET & IDIP (MS/CIC,PBA)Hospital de Niños Sor María LudovicaLa PlataArgentina

Personalised recommendations