Morphological and Biological Traits, Exoskeleton Biochemistry and Socio-Economic Impacts of the Alien Invasive Crab Libinia dubia H. Milne Edwards, 1834 from the Tunisian Coast (Central Mediterranean)

  • Wafa Rjiba-Bahri
  • Faten Khamassi
  • Emna Soufi Kechaou
  • Amani Chaffai
  • Jamila Ben SouissiEmail author


This work is the first study on biology and biochemistry of Libinia dubia on the Mediterranean Sea as well as socio-economic impacts of this spider crab proliferation on artisanal fishing activities along the Tunisian coasts. Morphometric characteristics of 913 spider crabs collected in 2016 within the Gulf of Gabès in Tunisia were examined. A sexual dimorphism was observed concerning the body, chelar propodus and abdomen form and sizes. Crab’s carapace width ranged from 22.7 to 89.1 mm and from 4.02 to 74.5 mm, for males and females, respectively. The sex ratio was male biased (M: F = 1: 0.92). Local Ecological Knowledge surveys revealed a decline in fishermen’s income of 72% due to crab invasion (damages of fishing nets and catches, decrease of working days and catch yield). Socio-economic impacts of Libinia dubia can be reverted into profits by using crab exoskeleton (shells) for feeding and for bioactive molecules extraction. They are mainly composed of ash (71% of the dry weight dw), chitin (from 14.66% to 15.13% dw), crude proteins (11%) and fats (between 0.49% and 0.86%) with no sex difference for all studied parameters (p > 0.05). Exoskeletons are largely composed of calcium, magnesium and phosphorus with heavy metals contents (Pb and Cd) under the detection limits (0.04 ppm).


Bioinvasion Gulf of Gabès Climate change Spider crab shells Local ecological knowledge Blue economy 



Thanks are expressed to the French Research Institute for Exploitation of the Sea (Ifremer), for helpful collaboration and continuous assistance during the study.

The authors would like also to thank the fishermen for their helpful and useful contribution.

We also express our gratitude to anonymous reviewers for their insightful and helpful comments and suggestions which improves the clarity of this document.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. Abdel-Salam HA (2013) Assessment of biochemical compositions and mineral contents of carapace of some important commercially crustaceans and mollusks organisms from egyptian and Saudi Arabia coasts as a new animal feed. American J Bio Sci 1(2):35–43. CrossRefGoogle Scholar
  2. Adeyeye EI, Olanlokun JO, Falodun TO (2010) Proximate and mineral composition of whole body, flesh and exoskeleton of male and female common West African fresh water crab Sudananautes africanus africanus. Polish J Food Nutr Sci 60(3):213–216Google Scholar
  3. Al Sagheer FA, Al-Sughayer MA, Muslim S, Elsabee MZ (2009) Extraction and characterization of chitin and chitosan from marine sources in Arabian Gulf. Carbohydr Polym 77(2):410–419. CrossRefGoogle Scholar
  4. AOAC (1980) Official methods of analyses. Association of Official Analytical Chemists, Washington: DCGoogle Scholar
  5. Azzurro E, Moshella P, Maynou F (2011) Tracking signals of change in Mediterranean fish diversity based on local ecological knowledge. PLoS One 6(9):8p. CrossRefGoogle Scholar
  6. Azzurro E, Tuset VM, Lombarte A, Maynou F, Simberloff D, Rodríguez-Pérez A, Solé RV (2014) External morphology explains the success of biological invasions. Ecol Lett 17:1455–1463. CrossRefGoogle Scholar
  7. Bacher S, Blackburn TM, Essl F, Genovesi P, Heikkilä J, Jeschke JM, Jones G, Keller R, Kenis M, Kueffer C, Martinou AF, Nentwig W, Pergl J, Pyšek P, Rabitsch W, Richardson DM, Roy HE, Saul WC, Scalera R, Vilà M, Wilson JRU, Kumschick S (2018) Socio-economic impact classification of alien taxa (SEICAT). Methods Ecol Evol 9:159–168. CrossRefGoogle Scholar
  8. Baklouti S, Derbali A, Dhieb K, Jarboui O (2013) Reproductive biology of the Mediterranean green crab, Carcinus aestuarii Nardo, 1847 (Crustacea: portunidae), in the Gulf of Gabes (Tunisia, Central Mediterranean). Cah Biol Mar 54:411–417Google Scholar
  9. Beaney P, Lizardi Mendoza J, Healy M (2005) Comparison of chitins produced by chemical and bioprocessing methods. J Chem Technol Biotechnol 80:145–150. CrossRefGoogle Scholar
  10. Beaudreau AH, Levin PS (2014) Advancing the use of local ecological knowledge for assessing data-poor species in coastal ecosystems. Ecol Appl 24(2):244–256. CrossRefGoogle Scholar
  11. Ben Souissi J (2015) Les espèces non indigènes invasives et leurs impacts sur l'environnement et les activités économiques en mer Méditerranée. Watch letter CIHEAM 33Google Scholar
  12. Berger K (2013) Valorisation des matières résiduelles issues des usines de transformation de la crevette Volet 1 : résidus solides séchés, Rapport présenté à L’Association québécoise de l’industrie de la pêche. Merinov et Agrinova. QuébecGoogle Scholar
  13. Bilodeau CL, Durbecq T, Thibodeau M Tita G (2011) Identification de scénarios de valorisation des matières résiduelles critiques aux Îles-de-la-Madeleine Rapport de stage en gestion des matières résiduelles. Centre de recherche sur les milieux insulaires et maritimes (CERMIM). Îles-de-la-Madeleine, QuébecGoogle Scholar
  14. Bosselmann F, Romano P, Fabririus H, Raabe D, Epple M (2007) The composition of the exosqueleton of two crustacea : the American lobster Homarus americanus and the edible crab Cancer pagurus. Thermochim Acta 463:65–68. CrossRefGoogle Scholar
  15. Carmona- Osalde C, Serna RM (2012) Reproductive aspects of the spider crab Libinia dubia under laboratory conditions. Hydrobiologica 22(1):58–61Google Scholar
  16. DGPA Direction Générale de la Pêche et d’Aquaculture (2016) Annuaires des statistiques des produits de la pêche. Tunisie: Ministère de l'AgricultureGoogle Scholar
  17. Enzenross L, Enzenross R (2000) Non-Mediterranean crustaceans in Tunisian waters (Decapoda, Macrura and Brachyura). Crustaceana 73:187–195CrossRefGoogle Scholar
  18. European Commission (2013) Règlement (UE) No 1275/2013 de la commissionmodifiant l’annexe I de la directive 2002/32/CE du Parlement européen et du Conseil en ce qui concerne les teneurs maximales en arsenic, en cadmium, en plomb, en nitrite, en essence volatile de moutarde et en impuretés botaniques nuisibles. Off J Eur Union 328:86–92Google Scholar
  19. Ferraro V, Cruz IB, Ferreira JR, Malcata X, Pintado ME Castro P (2010) Valorisation of natural extracts from marine source focused on marine by-products: a review. Food Res 43:2221–2233. CrossRefGoogle Scholar
  20. Fischer S, Wolff M (2006) Fisheries assessment of Callinectes arcuatus (Brachyura, Portunidae) in the Gulf of Nicoya, Costa Rica. Fish Res 77(3):301–311. CrossRefGoogle Scholar
  21. Folch J, Lees M, Sloane-Stanley GH (1957) A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226:497–509Google Scholar
  22. Gonçalves GRL, Bolla EA Jr, Negreiros-Fransozo ML, Castilho A (2016) Morphometric and gonad maturity of the spider crab Libinia ferreirae Brito Capello, 1871 (Decapoda: Majoidea: Epialtidae) on the south-eastern Brazilian coast. J Mar Biol Assoc UK:1–7.
  23. González-Gurriarán E, Freire J, Bernárdez C (2002) Migratory patterns of female spider crabs Maja squinado detected using electronic tags and telemetry. J Crustac Biol 22:91–97. CrossRefGoogle Scholar
  24. Guerao G, Rotllant G, Gisbert E, Marc Uyà M, Cardona L (2016) Consistent habitat segregation between sexes in the spider crabs Maja brachydactyla and Maja squinado (Brachyura), as revealed by stable isotopes. Sci Mar 80(1):000–000. CrossRefGoogle Scholar
  25. Hajjej G, Sley A, Jarboui O (2016) Morphometrics and length-weight relationship in the blue swimming crab, Portunus segnis (Decapoda, Brachyura) from the gulf of Gabes, Tunisia. Inter J App Sci 3:10–16CrossRefGoogle Scholar
  26. Jedlicka J, Wortham JL (2014) Grooming behaviors in the spider crab Libinia dubia. Florida Scientist 77:33–34Google Scholar
  27. Kaya M, Bulut E, Mujtaba M, Sivickis K, Sargin I, Akyuz B, Erdogan S (2016) Gender influences differentiation of chitin among body parts. Arch Insect Biochem Physiol 93(2):96–109. CrossRefGoogle Scholar
  28. Lage-Yusty MA, Vilasoa Martínez M, Álvarez Pérez S, López Hernández J (2011) Chemical composition of snow crab shells (Chionoecetes opilio). Composición química del caparazón del cangrejo de las nieves (Chionoecetes opilio). CYTA- J Food 9:265–270. CrossRefGoogle Scholar
  29. Latrouite D, Le Foll D (1989) Données sur les migrations des crabes tourteau Cancer pagurus et araignées de mer Maja squinado. Océanis 15(2):133–142Google Scholar
  30. Le Foll D (1993) Biologie et exploitation de l'araignée de mer Maja squinado (Herbst) en manche ouest. Thesis Université de Bretagne Occidentale, BretagneGoogle Scholar
  31. Leroux K (2012). Purification de la chitine par hydrolyse enzymatique à partir de coproduits de crevette Penaeus vannamei. Caractérisations des produits et optimisation du procédé. Thesis Central University. Nantes, FranceGoogle Scholar
  32. Luquet G (2012) Biomineralizations: insights and prospects from crustaceans. ZooKeys 176:103–121. CrossRefGoogle Scholar
  33. Maginnis TL, Isikbay M, Degerstedt SG, Luethke TJ, Ortman M (2015) The effects of cheliped autotomy and regeneration on aggression in purple shore crabs (Hemigrapsus nudus). Mar Freshw Behav Physiol 47:135–146. CrossRefGoogle Scholar
  34. Mohapatra A, Rautray TR, Patra AK, Vijayan V, Mohanty RK (2008) Elemental composition in mud crab Scylla serrata from Mahanadi estuary, India: in situ irradiation analysis by external PIXE. Food Chem Toxicol 47:119–123. CrossRefGoogle Scholar
  35. Mohapatra A, Rautray TR, Patra AK, Vijayan V, Mohanty RK (2009) Trace element-based food value evaluation in soft and hard-shelled mud crabs. Food Chem Toxicol 47:2730–2734. CrossRefGoogle Scholar
  36. O’Brien SB, Landau M, Able KW (1995) Seasonal and spatial distribution of two species of spider crab in Great Bay, New Jersey. Am Zool 35:67AGoogle Scholar
  37. O’Brien SB, Landau M, Kenneth W, Able KW (1999) Sex ratios of two species of spider crabs, Libinia dubia H. Milne Edwards, 1834 and L. emarginata leach, 1815, in the area of great bay, New Jersey. Crustaceana 72(2):187–192. CrossRefGoogle Scholar
  38. Ojaveer H, Galil B, Campbell M, Carlton J, Clode JC, Cook EJ, Davidson AD, Hewitt CL, Jelmert A, Marchini A, Cynthia HM (2015) Classification of non-indigenous species based on their impacts: considerations for application in marine management. PLoS Biol 13(4):e1002130. CrossRefGoogle Scholar
  39. Onyango SD (2002) The breeding cycle of Scylla serrata (Forskal, 1755) at Ramisi River estuary, Kenya. Wetl Ecol Manag 10:257–263. CrossRefGoogle Scholar
  40. Ounifi-Ben Amor K, Rifi M, Draief I, Zaouali J, Ben Souissi J (2016) Update of alien fauna and new records from Tunisian marine waters. Mediterr Mar Sci 17(1):124–143. CrossRefGoogle Scholar
  41. Paez-Osuna F, Perez-Gonzalez R, Izaguirre-Fierro G, Zazueta-Padilla HM, Flores-Campana LM (1995) Trace metal concentrations and their distribution in the lobster Panulirus inflatus (Boivier, 1895) from the Mexican Pacific Coast. Environ Pollut 90:163–170. CrossRefGoogle Scholar
  42. Petricorena ZC (2014) Chemical composition of fish and fishery products. In: Cheung PCK, Mehta BM (eds) Handbook of food chemistry. Springer, Berlin Heidelberg, pp 1–28Google Scholar
  43. Raabe D, Sachs C, Romano P (2005) The crustacean exoskeleton as an example of a structurally and mechanically graded biological nanocomposite material. Acta Mater 53(15):4281–4292. CrossRefGoogle Scholar
  44. Ravi Kumar MNV (2000) A review of chitin and chitosan applications. React Funct Polym 46:1–27CrossRefGoogle Scholar
  45. Rjiba W, Ben Ismail H, Baron R, Ben Souissi J (2016) Valorisation des hydrolysats protéiques de la carapace du crabe invasif Libinia dubia du golfe de Gabès. Rapport de la Commission Internationale pour l’Exploration Scientifique de la Méditerranée (CIESM) 41:310Google Scholar
  46. Sampedro MP, González-Gurriarán E (2004) Aggregating behavior of the spider crab Maja squinado in shallow waters. J Crustac Biol 24(1):168–177CrossRefGoogle Scholar
  47. Sandifer PA, Van Engel WA (1971) Larval development of the spider crab Libinia dubia H. Milne Edwards (Brachyura, Majidae, Pisinae), reared in laboratory culture. Chesap Sci 12:18–25. CrossRefGoogle Scholar
  48. Shahidi F, Synowiecki J (1991) Isolation and characterization of nutrients and value added products from snow crab (Chionoecetes opilio) and shrimp (Pandalus borealis) processing discard. J Agric Food Chem 39:1527–1532. CrossRefGoogle Scholar
  49. Shahidi F, Arachchi JKV, Jeon YJ (1999) Food applications of chitin and chitosan. Trends Food Sci Technol 10:37–51CrossRefGoogle Scholar
  50. Smith DM, Tabrett SJ, Barclay MC, Irvin SJ (2005) The efficacy of ingredients included in shrimp feeds to stimulate intake. Aquac Nutr 11:263–272. CrossRefGoogle Scholar
  51. Stachowicz JJ, Hay M (1999) Reducing predation through chemically mediated camouflage: indirect effects of plants defenses on herbivores. Ecology 80:495–509Google Scholar
  52. Stewart G, Noyes-Hull G (2010) Feasibility of producing value added products from snow crab processing waste in cape Breton, Nova Scotia. The Gulf Aquarium and Marine Station Cooperative, QuébecGoogle Scholar
  53. Streftaris N, Zenetos A (2006) Alien marine species in the Mediterranean - the 100 ‘worst Invasives’ and their impact. Mediterr Mar Sci 7(1):87–118. CrossRefGoogle Scholar
  54. Tavares M, Santana W (2012) On the morphological differentiation between Libinia spinosa and L. ferreirae (Crustacea: Brachyura: Majoidae: Epilatidae). Zoologia 29(6):577–588CrossRefGoogle Scholar
  55. Tolaimate A, Desbrieres J, Rhazia M, Alagui A (2003) Contribution to the preparation of chitins and chitosans with controlled physico-chemical properties. Polymer 44:7939–7952. CrossRefGoogle Scholar
  56. Toppe J, Aksnes A, Hope B, Albrektsen S (2006) Inclusion of fish bone and crab by-products in diets for Atlantic cod, Gadus morhua. Aquaculture 53:636–645. CrossRefGoogle Scholar
  57. Tunberg BG, Reed S (2004) Mass occurrence of the jellyfish Stomolophus meleagrisand an associated spider carb Libinia dubia, eastern Florida. Florida Scientist 67:93–104Google Scholar
  58. Ünal V, Göncüoğlu H, Durgun D, Tosunoğlu Z, Deval C, Turan C (2015) Silver-cheeked toadfish, Lagocephalus sceleratus (Actinopterygii: Tetraodontiformes: Tetraodontidae), causes a substantial economic losses in the Turkish Mediterranean coast: a call for decision makers. Acta Ichthyol Piscat 45(3):231–237. CrossRefGoogle Scholar
  59. Wasson K, Lyon BE, Knope M (2002) Hair-trigger autotomy in porcelain crabs is a highly effective escape strategy. Behav Ecol 13:481–486CrossRefGoogle Scholar
  60. Weng HT (1992) The sand crab Portunus pelagicus (Linnaeus) populations of two different environments in Queensland. Fish Res 13:407–422CrossRefGoogle Scholar
  61. Williams IO, Ekpenyong E, Lawal OO, Essien NC, Edemumoh TO (2016) Nutrient and energy composition of flesh, limbs and carapace of Callinectes amnicola (blue crab) from great Kwa River, South East Nigeria. Afri J Food Sci Techno 7(3):60–65Google Scholar
  62. Wortham JL, LaVelle A (2016) Setal morphology of grooming appendages in Libinia dubia. J Morphol 277(8):1045–1061. CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Wafa Rjiba-Bahri
    • 1
  • Faten Khamassi
    • 2
  • Emna Soufi Kechaou
    • 2
  • Amani Chaffai
    • 1
  • Jamila Ben Souissi
    • 1
    • 2
    Email author
  1. 1.Laboratoire de Biodiversité, Biotechnologie et Changements Climatiques, Faculté des Sciences de TunisUniversité Tunis El ManarTunisTunisie
  2. 2.Institut National Agronomique de TunisieUniversité de CarthageTunisTunisie

Personalised recommendations