Advertisement

Potential Application of the New Sentinel Satellites for Monitoring of Harmful Algal Blooms in the Galician Aquaculture

  • Jesus M. Torres PalenzuelaEmail author
  • Luis González Vilas
  • Francisco M. Bellas Aláez
  • Yolanda Pazos
Article
  • 30 Downloads

Abstract

Harmful Algae Blooms (HABs) in the Rias Baixas area (Galicia) cause a strong ecological and economic impact, since they can even force the closure of the rafts production areas for mollusc culture. In this work, we introduce a method for detection and monitoring of HABs in Galicia based on the analysis of map products derived from optical satellite images, including chlorophyll a concentration or species indicators. The approach is developed in the framework of CoastObs project, which started in 2017 and explores the potential of new Sentinel satellites for coastal water monitoring, suggesting different applications such as seagrass, phytoplankton size class or HABs detection. Preliminary results obtained using a set of images acquired on July 2018 suggest the great potential of this approach, which could complement the existing monitoring program based on direct observations.

Keywords

Harmful Algae Blooms (HABs) Rias Baixas Monitoring program Sentinel-3 Chlorophyll a concentration 

Notes

Acknowledgments

This work was partially funded by the European Union’s Horizon 2020 research and innovation program project CostObs (grant agreement n° 776348). Authors want to thank INTECMAR, ARVI and the Regulatory Council of Mussel from Galicia for their support.

References

  1. Anderson DM (2009) Approaches to monitoring, control and management of harmful algal blooms (HABs). Ocean Coast Manage 52(7):342–347CrossRefGoogle Scholar
  2. Anderson CR, Siegel DA, Kudela RM, Brzezinski MA (2009) Empirical models of toxigenic pseudo-nitzschia blooms: potential use as a remote detection tool in the Santa Barbara Channel. Harmful Algae 8:478–492CrossRefGoogle Scholar
  3. Barton ED, Largier JL, Torres R, Sheridan M, Trasviña A, Souza A, Pazos Y, Valle-Levinson A (2015) Coastal upwelling and downwelling forcing of circulation in a semi-enclosed bay: Ria de Vigo. Prog Oceanogr 134:173–189CrossRefGoogle Scholar
  4. Berdalet E, Fleming LE, Gowen R, Davidson K, Hess P, Backer LC, Moore SK, Hoagl P, Enevoldsen (2016) Marine harmful algal blooms, human health and wellbeing: challenges and opportunities in the 21st century. J Mar Biol Assoc U K 96:61–91CrossRefGoogle Scholar
  5. Blondeau-Patissier D, Gower JFR, Dekker AG, Phinn SR, Brando VE (2014) A review of ocean color remote sensing methods and statistical techniques for the detection, mapping and analysis of phytoplankton blooms in coastal and open oceans. Prog Oceanogr 123:123–144CrossRefGoogle Scholar
  6. Devred E, Martin J, Sathyendranath S, Stuart V, Horne E, Platt T, Forget M-H, Smith P (2018) Development of a conceptual warning system for toxic levels of Alexandrium fundyense in the bay of Fundy based on remote sensing data. Remote Sens Environ 211:413–424CrossRefGoogle Scholar
  7. Donlon C, Berruti B, Buongiorno A, Ferreira M-H, Féménias P, Frerick J, Goryl P, Klein U, Laur H, Mavrocordatos C, Nieke J, Rebhan H, Seitz B, Stroede J, Sciarra R (2012) The global monitoring for environment and security (GMES) Sentinel-3 mission. Remote Sens Environ 120:37–57CrossRefGoogle Scholar
  8. Drusch M, Del Bello U, Carlier S, Colin O, Fernandez V, Gascon F, Hoersch B, Isola C, Laberinti P, Martimort P, Meygret A, Spoto F, Sy O, Marchese F, Bargellini P (2012) Sentinel-2: ESA's optical high-resolution mission for GMES operational services. Remote Sens Environ 120:25–36CrossRefGoogle Scholar
  9. Gons HJ, Rijkeboer M, Ruddick KG (2005) Effect of a waveband shift on chlorophyll retrieval from MERIS imagery of inland and coastal waters. J Plankton Res 27:125–127CrossRefGoogle Scholar
  10. González Vilas L, Spyrakos E, Palenzuela JMT (2011) Neural network estimation of chlorophyll a from MERIS full resolution data for the coastal waters of Galician Rias (NW Spain). Remote Sens Environ 115:524–535CrossRefGoogle Scholar
  11. González Vilas L, Spyrakos E, Palenzuela JMT, Pazos Y (2014) Support vector machine-based method for predicting pseudo-nitzschia spp. blooms in coastal waters (Galician rias, NW Spain). Prog Oceanogr 124:66–77CrossRefGoogle Scholar
  12. Gregg WW, Rousseaux CS (2014) Decadal trends in global pelagic ocean chlorophyll: a new assessment integrating multiple satellites, in situ data, and models. Journal of Geophysical Research C: Oceans 119(9):5921–5933Google Scholar
  13. Kudela RM, Stumpf RP, Petrov P (2017) Acquisition and analysis of remote sensing imagery of harmful algal blooms. In: Anderson DM, Boerlage SFE, Dixon MB (eds) Harmful algal blooms (HABs) and desalination: a guide to impacts, monitoring and management, manual and guides 78, intergovernmental oceanographic commission of UNESCO 2017, Paris, 119:132Google Scholar
  14. Kurekin AA, Miller PI, Van der Woerd HJ (2014) Satellite discrimination of Karenia mikimotoi and Phaeocystis harmful algal blooms in European coastal waters: merged classification of ocean colour data. Harmful Algae 31:163–176CrossRefGoogle Scholar
  15. Labarta U, Fernández-Reiriz MJ (2019) The Galician mussel industry: innovation and changes in the last forty years. Ocean Coast Manage 167:208–218CrossRefGoogle Scholar
  16. Mobley CD, Werdell J, Franz B, Ahmad Z, Bailey S (2016) Atmospheric correction for satellite ocean color radiometry, NASA technical memorandum 2016–217551. NASA, Greenbelt (MD), 85 ppGoogle Scholar
  17. Mohamed AZ, Al-Shehri AM (2011) Occurrence and germination of dinoflagellate cysts in surface sediments from the Red Sea off the coasts of Saudi Arabia. Oceanologia 53:121–136CrossRefGoogle Scholar
  18. Moore TS, Campbell JW, Dowell MD (2009) A class-based approach to characterizing and mapping the uncertainty of the MODIS ocean chlorophyll product. Remote Sens Environ 113(11):2424–2430CrossRefGoogle Scholar
  19. Nogueira E, Pérez FF, Ríos AF (1997) Seasonal patterns and long-term trends in an estuarine upwelling ecosystem (Rı́a de Vigo, NW Spain), estuarine. Coast Shelf Sci 44(3):285–300CrossRefGoogle Scholar
  20. Pitcher GC, Figueiras FG, Hickey BM, Moita MT (2010) The physical oceanography of upwelling systems and the development of harmful algal blooms. Prog Oceanogr 85:5–32CrossRefGoogle Scholar
  21. Rodríguez F (2018) Marea roja de Alexandrium minutum en Galicia [Blog Post] Retrieved from https://fitopasion.com/2018/07/marea-roja-de-alexandrium-minutum-en-galicia.html
  22. Rodríguez GR, Villasante S, García-Negro MC (2011) Are red tides affecting economically the commercialization of the Galician (NW Spain) mussel farming? Mar Policy 35:252–257CrossRefGoogle Scholar
  23. Soto IM, Cannizzaro J, Muller-Karger FE, Hu C, Wolny J, Goldgof D (2015) Evaluation and optimization of remote sensing techniques for detection of Karenia brevis blooms on the West Florida shelf. Remote Sens Environ 170:239–254CrossRefGoogle Scholar
  24. Spyrakos E, González Vilas L, Palenzuela JMT, Barton ED (2011) Remote sensing chlorophyll a of optically complex waters (rias Baixas, NW Spain): application of a regionally specific chlorophyll a algorithm for MERIS full resolution data during an upwelling cycle. Remote Sens Environ 115:2471–2485CrossRefGoogle Scholar
  25. Zheng G, DiGiacomo PM (2017) Uncertainties and applications of satellite-derived coastal water quality products. Prog Oceanogr 159:45–72CrossRefGoogle Scholar
  26. Zohdi E, Abbaspour M (2019) Harmful algal blooms (red tide): a review of causes, impacts and approaches to monitoring and prediction. Int J Environ Sci Technol 16:1789–1806CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Jesus M. Torres Palenzuela
    • 1
    Email author
  • Luis González Vilas
    • 1
  • Francisco M. Bellas Aláez
    • 1
  • Yolanda Pazos
    • 2
  1. 1.Applied Physics DepartmentUniversity of VigoVigoSpain
  2. 2.Unit of Oceanography and PhytoplanktonINTECMARVillargacía de ArousaSpain

Personalised recommendations